红毛鸡生产氧化和水解酶的研究由剑麻废料和牛粪补充而成的灰色

P. Raymond, A. Mshandete, Amelia Kajumulo Kivaisi
{"title":"红毛鸡生产氧化和水解酶的研究由剑麻废料和牛粪补充而成的灰色","authors":"P. Raymond, A. Mshandete, Amelia Kajumulo Kivaisi","doi":"10.1155/2015/650543","DOIUrl":null,"url":null,"abstract":"The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff.) Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0)] displaying the highest activity of 39.45 ± 12.05 Ug−1. Lignin peroxidase (LiP) exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93 ± 0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0) substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase) activity of 2.03 ± 0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100) after first flush; that of pectinase (1.90 ± 0.32 Ug−1) was revealed after third flush on 10% supplemented SL : SB (0 : 100) substrate formulation while 10% supplemented SL : SB (25 : 75) exhibited the highest xylanase activity (1.23 ± 0.12 Ug−1) after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.","PeriodicalId":9268,"journal":{"name":"Biotechnology Research International","volume":"16 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Production of Oxidative and Hydrolytic Enzymes by Coprinus cinereus (Schaeff.) Gray from Sisal Wastes Supplemented with Cow Dung Manure\",\"authors\":\"P. Raymond, A. Mshandete, Amelia Kajumulo Kivaisi\",\"doi\":\"10.1155/2015/650543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff.) Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0)] displaying the highest activity of 39.45 ± 12.05 Ug−1. Lignin peroxidase (LiP) exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93 ± 0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0) substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase) activity of 2.03 ± 0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100) after first flush; that of pectinase (1.90 ± 0.32 Ug−1) was revealed after third flush on 10% supplemented SL : SB (0 : 100) substrate formulation while 10% supplemented SL : SB (25 : 75) exhibited the highest xylanase activity (1.23 ± 0.12 Ug−1) after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.\",\"PeriodicalId\":9268,\"journal\":{\"name\":\"Biotechnology Research International\",\"volume\":\"16 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/650543\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/650543","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

食用和药用白腐菌Coprinus cinereus (Schaeff.)的氧化酶和水解酶活性以牛粪和剑麻渣为补充物,在固体底物发酵条件下,对灰香菇菌丝生长和子实体发育过程进行了观察。漆酶的滴度值最高。其在菌丝生长过程中的活性高于结果期,添加10%基质配方的剑麻叶去皮残留物[缩写SL: SB(100: 0)]的活性最高,为39.45±12.05 Ug−1。木质素过氧化物酶(LiP)表现出典型的波峰型,在菌丝完全定植或第一次收获后不久出现峰值;在菌丝定植过程中,未添加SL: SB(100: 0)培养基的最高活性为1.93±0.62 Ug−1。水解酶方面,首次冲洗后添加20% SL: SB(0: 100)的羧甲基纤维素酶(CMCase)活性最高,为2.03±0.70 Ug−1;添加10% SL: SB(0: 100)的底物在第三次冲洗后显示果胶酶活性(1.90±0.32 Ug−1),而添加10% SL: SB(25: 75)的底物在第一次冲洗后显示最高的木聚糖酶活性(1.23±0.12 Ug−1)。这些结果表明,鸡鸡的氧化酶和水解酶的活性都受到生长发育阶段的调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production of Oxidative and Hydrolytic Enzymes by Coprinus cinereus (Schaeff.) Gray from Sisal Wastes Supplemented with Cow Dung Manure
The activity of oxidative and hydrolytic enzymes of the edible and medicinal white rot fungi Coprinus cinereus (Schaeff.) Gray mushroom was observed during mycelia growth and fruiting body development in solid substrate fermentation using sisal waste fractions amended with cow dung manure as supplement. Laccase had the highest titre value among the five detected enzymes. Its activity was higher during mycelia growth compared to fruiting phase, with 10% supplemented substrate formulation unmixed sisal leaf decortication residues [abbreviated SL : SB (100 : 0)] displaying the highest activity of 39.45 ± 12.05 Ug−1. Lignin peroxidase (LiP) exhibited a characteristic wave-like pattern with the highest peaks found either during full mycelia colonization or soon after first flush harvest; the highest activity of 1.93 ± 0.62 Ug−1 was observed on unsupplemented SL : SB (100 : 0) substrate formulation during mycelia colonization. For hydrolytic enzymes, the highest carboxymethyl cellulase (CMCase) activity of 2.03 ± 0.70 Ug−1 was observed on 20% supplemented SL : SB (0 : 100) after first flush; that of pectinase (1.90 ± 0.32 Ug−1) was revealed after third flush on 10% supplemented SL : SB (0 : 100) substrate formulation while 10% supplemented SL : SB (25 : 75) exhibited the highest xylanase activity (1.23 ± 0.12 Ug−1) after first flush. These findings show that the activities of both oxidative and hydrolytic enzymes were regulated in line with developmental phase of growth of Coprinus cinereus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Potential Applications of Some Indigenous Bacteria Isolated from Polluted Areas in the Treatment of Brewery Effluents. Generation of Recombinant Antibodies against the beta-(1,6)-Branched beta-(1,3)-D-Glucan Schizophyllan from Immunized Mice via Phage Display. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal. Optimization of Crude Oil and PAHs Degradation by Stenotrophomonas rhizophila KX082814 Strain through Response Surface Methodology Using Box-Behnken Design Corrigendum to “Proteases from Canavalia ensiformis: Active and Thermostable Enzymes with Potential of Application in Biotechnology”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1