从计算机科学的角度看生产中的数字化转型

IF 3.5 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Internet of Things Pub Date : 2022-02-15 DOI:10.1145/3502265
P. Brauner, M. Dalibor, M. Jarke, Ike Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, Judith Michael, J. Pennekamp, C. Quix, Bernhard Rumpe, Wil M.P. van der Aalst, Klaus Wehrle, A. Wortmann, M. Ziefle
{"title":"从计算机科学的角度看生产中的数字化转型","authors":"P. Brauner, M. Dalibor, M. Jarke, Ike Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, Judith Michael, J. Pennekamp, C. Quix, Bernhard Rumpe, Wil M.P. van der Aalst, Klaus Wehrle, A. Wortmann, M. Ziefle","doi":"10.1145/3502265","DOIUrl":null,"url":null,"abstract":"The Industrial Internet-of-Things (IIoT) promises significant improvements for the manufacturing industry by facilitating the integration of manufacturing systems by Digital Twins. However, ecological and economic demands also require a cross-domain linkage of multiple scientific perspectives from material sciences, engineering, operations, business, and ergonomics, as optimization opportunities can be derived from any of these perspectives. To extend the IIoT to a true Internet of Production, two concepts are required: first, a complex, interrelated network of Digital Shadows which combine domain-specific models with data-driven AI methods; and second, the integration of a large number of research labs, engineering, and production sites as a World Wide Lab which offers controlled exchange of selected, innovation-relevant data even across company boundaries. In this article, we define the underlying Computer Science challenges implied by these novel concepts in four layers: Smart human interfaces provide access to information that has been generated by model-integrated AI. Given the large variety of manufacturing data, new data modeling techniques should enable efficient management of Digital Shadows, which is supported by an interconnected infrastructure. Based on a detailed analysis of these challenges, we derive a systematized research roadmap to make the vision of the Internet of Production a reality.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"14 1","pages":"1 - 32"},"PeriodicalIF":3.5000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"A Computer Science Perspective on Digital Transformation in Production\",\"authors\":\"P. Brauner, M. Dalibor, M. Jarke, Ike Kunze, I. Koren, G. Lakemeyer, M. Liebenberg, Judith Michael, J. Pennekamp, C. Quix, Bernhard Rumpe, Wil M.P. van der Aalst, Klaus Wehrle, A. Wortmann, M. Ziefle\",\"doi\":\"10.1145/3502265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Industrial Internet-of-Things (IIoT) promises significant improvements for the manufacturing industry by facilitating the integration of manufacturing systems by Digital Twins. However, ecological and economic demands also require a cross-domain linkage of multiple scientific perspectives from material sciences, engineering, operations, business, and ergonomics, as optimization opportunities can be derived from any of these perspectives. To extend the IIoT to a true Internet of Production, two concepts are required: first, a complex, interrelated network of Digital Shadows which combine domain-specific models with data-driven AI methods; and second, the integration of a large number of research labs, engineering, and production sites as a World Wide Lab which offers controlled exchange of selected, innovation-relevant data even across company boundaries. In this article, we define the underlying Computer Science challenges implied by these novel concepts in four layers: Smart human interfaces provide access to information that has been generated by model-integrated AI. Given the large variety of manufacturing data, new data modeling techniques should enable efficient management of Digital Shadows, which is supported by an interconnected infrastructure. Based on a detailed analysis of these challenges, we derive a systematized research roadmap to make the vision of the Internet of Production a reality.\",\"PeriodicalId\":29764,\"journal\":{\"name\":\"ACM Transactions on Internet of Things\",\"volume\":\"14 1\",\"pages\":\"1 - 32\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Internet of Things\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3502265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 37

摘要

工业物联网(IIoT)通过促进数字孪生制造系统的集成,有望为制造业带来重大改善。然而,生态和经济需求也需要材料科学、工程、运营、商业和人体工程学等多个科学观点的跨领域联系,因为优化机会可以从这些观点中得到。要将工业物联网扩展到真正的生产互联网,需要两个概念:首先,一个复杂的、相互关联的数字阴影网络,将特定领域的模型与数据驱动的人工智能方法相结合;第二,将大量的研究实验室、工程和生产基地整合为一个世界范围的实验室,提供选定的、与创新相关的数据的受控交换,甚至跨越公司边界。在本文中,我们从四个层面定义了这些新概念所隐含的潜在计算机科学挑战:智能人机界面提供对由模型集成人工智能生成的信息的访问。鉴于制造数据的多样性,新的数据建模技术应该能够有效地管理数字阴影,这是由互联基础设施支持的。在对这些挑战进行详细分析的基础上,我们得出了一个系统化的研究路线图,以使生产互联网的愿景成为现实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Computer Science Perspective on Digital Transformation in Production
The Industrial Internet-of-Things (IIoT) promises significant improvements for the manufacturing industry by facilitating the integration of manufacturing systems by Digital Twins. However, ecological and economic demands also require a cross-domain linkage of multiple scientific perspectives from material sciences, engineering, operations, business, and ergonomics, as optimization opportunities can be derived from any of these perspectives. To extend the IIoT to a true Internet of Production, two concepts are required: first, a complex, interrelated network of Digital Shadows which combine domain-specific models with data-driven AI methods; and second, the integration of a large number of research labs, engineering, and production sites as a World Wide Lab which offers controlled exchange of selected, innovation-relevant data even across company boundaries. In this article, we define the underlying Computer Science challenges implied by these novel concepts in four layers: Smart human interfaces provide access to information that has been generated by model-integrated AI. Given the large variety of manufacturing data, new data modeling techniques should enable efficient management of Digital Shadows, which is supported by an interconnected infrastructure. Based on a detailed analysis of these challenges, we derive a systematized research roadmap to make the vision of the Internet of Production a reality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.70%
发文量
0
期刊最新文献
Introduction to the Special Issue on Wireless Sensing for IoT Special Issue on Wireless Sensing for IoT: A Word from the Editor-in-Chief Resilient Intermediary‐Based Key Exchange Protocol for IoT A Two-Mode, Adaptive Security Framework for Smart Home Security Applications Online learning for dynamic impending collision prediction using FMCW radar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1