基于视觉特征和标签共现的大规模网络视频镜头排序

Do Hang Nga, Keiji Yanai
{"title":"基于视觉特征和标签共现的大规模网络视频镜头排序","authors":"Do Hang Nga, Keiji Yanai","doi":"10.1145/2502081.2502139","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel ranking method, VisualTextualRank, which extends [1] and [2]. Our method is based on random walk over bipartite graph to integrate visual information of video shots and tag information of Web videos effectively. Note that instead of treating the textual information as an additional feature for shot ranking, we explore the mutual reinforcement between shots and textual information of their corresponding videos to improve shot ranking. We apply our proposed method to the system of extracting automatically relevant video shots of specific actions from Web videos [3]. Based on our experimental results, we demonstrate that our ranking method can improve the performance of video shot retrieval.","PeriodicalId":20448,"journal":{"name":"Proceedings of the 21st ACM international conference on Multimedia","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Large-scale web video shot ranking based on visual features and tag co-occurrence\",\"authors\":\"Do Hang Nga, Keiji Yanai\",\"doi\":\"10.1145/2502081.2502139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel ranking method, VisualTextualRank, which extends [1] and [2]. Our method is based on random walk over bipartite graph to integrate visual information of video shots and tag information of Web videos effectively. Note that instead of treating the textual information as an additional feature for shot ranking, we explore the mutual reinforcement between shots and textual information of their corresponding videos to improve shot ranking. We apply our proposed method to the system of extracting automatically relevant video shots of specific actions from Web videos [3]. Based on our experimental results, we demonstrate that our ranking method can improve the performance of video shot retrieval.\",\"PeriodicalId\":20448,\"journal\":{\"name\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 21st ACM international conference on Multimedia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2502081.2502139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 21st ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2502081.2502139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一种新的排序方法,VisualTextualRank,它扩展了[1]和[2]。我们的方法是基于二部图上的随机行走来有效地整合视频镜头的视觉信息和网络视频的标签信息。需要注意的是,我们没有将文本信息作为镜头排序的附加特征,而是探索了镜头与对应视频的文本信息之间的相互强化,从而提高了镜头排序。我们将提出的方法应用于从Web视频[3]中自动提取特定动作的相关视频片段的系统。基于实验结果,我们证明了我们的排序方法可以提高视频镜头检索的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale web video shot ranking based on visual features and tag co-occurrence
In this paper, we propose a novel ranking method, VisualTextualRank, which extends [1] and [2]. Our method is based on random walk over bipartite graph to integrate visual information of video shots and tag information of Web videos effectively. Note that instead of treating the textual information as an additional feature for shot ranking, we explore the mutual reinforcement between shots and textual information of their corresponding videos to improve shot ranking. We apply our proposed method to the system of extracting automatically relevant video shots of specific actions from Web videos [3]. Based on our experimental results, we demonstrate that our ranking method can improve the performance of video shot retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Summary abstract for the 1st ACM international workshop on personal data meets distributed multimedia πLDA: document clustering with selective structural constraints Massive-scale multimedia semantic modeling OTMedia: the French TransMedia news observatory Orchestration: tv-like mixing grammars applied to video-communication for social groups
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1