G. Alagu Vibisha, Malek G. Daher, S. M. Habibur Rahman, Z. Jaroszewicz, K.B. Rajesh, Rajan Jha
{"title":"利用铝-钴-钨-二硫化-石墨烯异质结构增强表面等离子共振生物传感器的灵敏度","authors":"G. Alagu Vibisha, Malek G. Daher, S. M. Habibur Rahman, Z. Jaroszewicz, K.B. Rajesh, Rajan Jha","doi":"10.13074/jent.2022.12.224462","DOIUrl":null,"url":null,"abstract":"An attempt has been made to enhance the sensitivity of a high-sensitive surface plasmon resonance (SPR) biosensor with an aluminium-cobalt bimetallic layer covered by a tungsten disulfide-graphene heterostructure. A thin layer of cobalt coated on an aluminium layer contributed substantially to increase the sensor performance. The use of Al and Co metals instead of noble metals like Ag and Au reduced the cost of the sensor. Further, tungsten disulfide (WS2) layers were employed to improve sensitivity and protect the bimetal Al-Co from becoming oxidized, whereas graphene served as the biomolecule trapping medium. The number of WS2 and graphene layers have optimized for better sensitivity. The proposed biosensor Al-Co-WS2-graphene structure displayed an excellent sensitivity of 300°/RIU, convenient for sensing biomolecules.","PeriodicalId":36296,"journal":{"name":"Journal of Water and Environmental Nanotechnology","volume":"76 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity Enhancement of Surface Plasmon Resonance-based Biosensor using Aluminium-Cobalt-Tungsten Disulfide-Graphene Heterostructure\",\"authors\":\"G. Alagu Vibisha, Malek G. Daher, S. M. Habibur Rahman, Z. Jaroszewicz, K.B. Rajesh, Rajan Jha\",\"doi\":\"10.13074/jent.2022.12.224462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An attempt has been made to enhance the sensitivity of a high-sensitive surface plasmon resonance (SPR) biosensor with an aluminium-cobalt bimetallic layer covered by a tungsten disulfide-graphene heterostructure. A thin layer of cobalt coated on an aluminium layer contributed substantially to increase the sensor performance. The use of Al and Co metals instead of noble metals like Ag and Au reduced the cost of the sensor. Further, tungsten disulfide (WS2) layers were employed to improve sensitivity and protect the bimetal Al-Co from becoming oxidized, whereas graphene served as the biomolecule trapping medium. The number of WS2 and graphene layers have optimized for better sensitivity. The proposed biosensor Al-Co-WS2-graphene structure displayed an excellent sensitivity of 300°/RIU, convenient for sensing biomolecules.\",\"PeriodicalId\":36296,\"journal\":{\"name\":\"Journal of Water and Environmental Nanotechnology\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Environmental Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.13074/jent.2022.12.224462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Environmental Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13074/jent.2022.12.224462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
摘要
利用二硫化钨-石墨烯异质结构覆盖的铝-钴双金属层,试图提高高灵敏度表面等离子体共振(SPR)生物传感器的灵敏度。在铝层上涂上一层薄薄的钴,大大提高了传感器的性能。使用Al和Co金属代替像Ag和Au这样的贵金属,降低了传感器的成本。此外,采用二硫化钨(WS2)层来提高灵敏度并保护双金属Al-Co不被氧化,而石墨烯作为生物分子捕获介质。WS2和石墨烯层的数量已经优化,以获得更好的灵敏度。所提出的al - co - ws2 -石墨烯结构的生物传感器具有300°/RIU的优异灵敏度,便于对生物分子进行传感。
Sensitivity Enhancement of Surface Plasmon Resonance-based Biosensor using Aluminium-Cobalt-Tungsten Disulfide-Graphene Heterostructure
An attempt has been made to enhance the sensitivity of a high-sensitive surface plasmon resonance (SPR) biosensor with an aluminium-cobalt bimetallic layer covered by a tungsten disulfide-graphene heterostructure. A thin layer of cobalt coated on an aluminium layer contributed substantially to increase the sensor performance. The use of Al and Co metals instead of noble metals like Ag and Au reduced the cost of the sensor. Further, tungsten disulfide (WS2) layers were employed to improve sensitivity and protect the bimetal Al-Co from becoming oxidized, whereas graphene served as the biomolecule trapping medium. The number of WS2 and graphene layers have optimized for better sensitivity. The proposed biosensor Al-Co-WS2-graphene structure displayed an excellent sensitivity of 300°/RIU, convenient for sensing biomolecules.