考虑温度场和电场相互影响的棒材结晶时的应力-应变状态

A. Siasiev, Andrii Dreus, S. Horbonos, Irina G. Balanenko, S. Dziuba
{"title":"考虑温度场和电场相互影响的棒材结晶时的应力-应变状态","authors":"A. Siasiev, Andrii Dreus, S. Horbonos, Irina G. Balanenko, S. Dziuba","doi":"10.15587/1729-4061.2020.203330","DOIUrl":null,"url":null,"abstract":"This paper reports a solution to the problem of determining the motion law of the crystallization front and the thermomechanical state of a two-phase rod for the case of mutual influence of the temperature and mechanical fields. An approximate analytical method has been used to solve the problem, combined with the method of successive intervals and a Gibbs variation principle. This method should indicate what is \"more beneficial\" to nature under the assigned external influences ‒ to change the temperature of the fixed element of a body or to transfer this element from one aggregate state to another. It is this approach that has made it possible, through the defined motion law of an interphase boundary, to take into consideration the effect of temperature on the tense-deformed state in the body, and vice versa. The ratios have been obtained to define the motion law of an interphase boundary, the temperature field, and the tense-deformed state in the rod. The results are shown in the form of charts of temperature and stress dependence on time and a coordinate. An analysis of the results shows that changes in the conditions of heat exchange with the environment and geometric dimensions exert a decisive influence on the crystallization process, and, consequently, on temperature and mechanical fields. The principal result is the constructed approximate analytical method and an algorithm for solving the problem on thermoviscoelasticity for growing bodies (bodies with a moving boundary) in the presence of a phase transition considering the heat exchange with the environment. Based on the method developed, the motion law of an interphase boundary, a temperature field, and the tense-deformed state are determined while solving the so-called quasi-related problem of thermoviscoelasticity. An approximate analytical solution has been obtained, which could be used by research and design organizations in modeling various technological processes in machine building, metallurgy, rocket and space technology, and construction","PeriodicalId":13594,"journal":{"name":"Information Systems & Economics eJournal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The Stressed-Strained State of a Rod at Crystallization Considering the Mutual Influence of Temperature and Mechanical Fields\",\"authors\":\"A. Siasiev, Andrii Dreus, S. Horbonos, Irina G. Balanenko, S. Dziuba\",\"doi\":\"10.15587/1729-4061.2020.203330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports a solution to the problem of determining the motion law of the crystallization front and the thermomechanical state of a two-phase rod for the case of mutual influence of the temperature and mechanical fields. An approximate analytical method has been used to solve the problem, combined with the method of successive intervals and a Gibbs variation principle. This method should indicate what is \\\"more beneficial\\\" to nature under the assigned external influences ‒ to change the temperature of the fixed element of a body or to transfer this element from one aggregate state to another. It is this approach that has made it possible, through the defined motion law of an interphase boundary, to take into consideration the effect of temperature on the tense-deformed state in the body, and vice versa. The ratios have been obtained to define the motion law of an interphase boundary, the temperature field, and the tense-deformed state in the rod. The results are shown in the form of charts of temperature and stress dependence on time and a coordinate. An analysis of the results shows that changes in the conditions of heat exchange with the environment and geometric dimensions exert a decisive influence on the crystallization process, and, consequently, on temperature and mechanical fields. The principal result is the constructed approximate analytical method and an algorithm for solving the problem on thermoviscoelasticity for growing bodies (bodies with a moving boundary) in the presence of a phase transition considering the heat exchange with the environment. Based on the method developed, the motion law of an interphase boundary, a temperature field, and the tense-deformed state are determined while solving the so-called quasi-related problem of thermoviscoelasticity. An approximate analytical solution has been obtained, which could be used by research and design organizations in modeling various technological processes in machine building, metallurgy, rocket and space technology, and construction\",\"PeriodicalId\":13594,\"journal\":{\"name\":\"Information Systems & Economics eJournal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Systems & Economics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15587/1729-4061.2020.203330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Systems & Economics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15587/1729-4061.2020.203330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文报道了在温度场和力学场相互影响的情况下,确定两相棒结晶锋运动规律和热力学状态问题的一种解决方法。结合连续区间法和吉布斯变分原理,采用近似解析法求解该问题。这种方法应该表明在指定的外部影响下,什么对自然“更有利”——是改变物体固定元素的温度,还是将该元素从一种聚合状态转移到另一种状态。正是这种方法使得通过确定相间边界的运动规律来考虑温度对物体张力变形状态的影响成为可能,反之亦然。得到了定义杆内相界面运动规律、温度场和拉伸变形状态的比值。结果以温度和应力随时间和坐标的关系图表的形式显示。对结果的分析表明,换热条件随环境和几何尺寸的变化对结晶过程有决定性的影响,从而对温度场和力学场也有决定性的影响。主要结果是建立了考虑与环境热交换的相变条件下生长体(有移动边界的体)热粘弹性问题的近似解析方法和求解算法。该方法在求解热粘弹性准相关问题的同时,确定了相间边界、温度场和张变形态的运动规律。得到了近似解析解,可用于机械制造、冶金、火箭和航天技术以及建筑等领域的研究和设计机构对各种工艺过程进行建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Stressed-Strained State of a Rod at Crystallization Considering the Mutual Influence of Temperature and Mechanical Fields
This paper reports a solution to the problem of determining the motion law of the crystallization front and the thermomechanical state of a two-phase rod for the case of mutual influence of the temperature and mechanical fields. An approximate analytical method has been used to solve the problem, combined with the method of successive intervals and a Gibbs variation principle. This method should indicate what is "more beneficial" to nature under the assigned external influences ‒ to change the temperature of the fixed element of a body or to transfer this element from one aggregate state to another. It is this approach that has made it possible, through the defined motion law of an interphase boundary, to take into consideration the effect of temperature on the tense-deformed state in the body, and vice versa. The ratios have been obtained to define the motion law of an interphase boundary, the temperature field, and the tense-deformed state in the rod. The results are shown in the form of charts of temperature and stress dependence on time and a coordinate. An analysis of the results shows that changes in the conditions of heat exchange with the environment and geometric dimensions exert a decisive influence on the crystallization process, and, consequently, on temperature and mechanical fields. The principal result is the constructed approximate analytical method and an algorithm for solving the problem on thermoviscoelasticity for growing bodies (bodies with a moving boundary) in the presence of a phase transition considering the heat exchange with the environment. Based on the method developed, the motion law of an interphase boundary, a temperature field, and the tense-deformed state are determined while solving the so-called quasi-related problem of thermoviscoelasticity. An approximate analytical solution has been obtained, which could be used by research and design organizations in modeling various technological processes in machine building, metallurgy, rocket and space technology, and construction
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investing in Lending Technology: IT Spending in Banking Governing 'European values' Inside Data Flows: Interdisciplinary Perspectives More Competitive Search Through Regulation Business News and Business Cycles Efecto de la banda ancha sobre el valor agregado en los municipios de Colombia (Effect of Broadband on Added Value in Colombia Municipalities)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1