{"title":"Riesz-Laplace小波变换与PCNN图像融合","authors":"Shuifa Sun, Yongheng Tang, Zhoujunshen Mei, Min Yang, Tinglong Tang, Yirong Wu","doi":"10.22630/mgv.2023.32.1.4","DOIUrl":null,"url":null,"abstract":"Important information perceived by human vision comes from the low-level features of the image, which can be extracted by the Riesz transform. In this study, we propose a Riesz transform based approach to image fusion. The image to be fused is first decomposed using the Riesz transform. Then the image sequence obtained in the Riesz transform domain is subjected to the Laplacian wavelet transform based on the fractional Laplacian operators and the multi-harmonic splines. After Laplacian wavelet transform, the image representations have directional and multi-resolution characteristics. Finally, image fusion is performed, leveraging Riesz-Laplace wavelet analysis and the global coupling characteristics of pulse coupled neural network (PCNN). The proposed approach has been tested in several application scenarios, such as multi-focus imaging, medical imaging, remote sensing full-color imaging, and multi-spectral imaging. Compared with conventional methods, the proposed approach demonstrates superior performance on visual effects, contrast, clarity, and the overall efficiency.","PeriodicalId":39750,"journal":{"name":"Machine Graphics and Vision","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion\",\"authors\":\"Shuifa Sun, Yongheng Tang, Zhoujunshen Mei, Min Yang, Tinglong Tang, Yirong Wu\",\"doi\":\"10.22630/mgv.2023.32.1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Important information perceived by human vision comes from the low-level features of the image, which can be extracted by the Riesz transform. In this study, we propose a Riesz transform based approach to image fusion. The image to be fused is first decomposed using the Riesz transform. Then the image sequence obtained in the Riesz transform domain is subjected to the Laplacian wavelet transform based on the fractional Laplacian operators and the multi-harmonic splines. After Laplacian wavelet transform, the image representations have directional and multi-resolution characteristics. Finally, image fusion is performed, leveraging Riesz-Laplace wavelet analysis and the global coupling characteristics of pulse coupled neural network (PCNN). The proposed approach has been tested in several application scenarios, such as multi-focus imaging, medical imaging, remote sensing full-color imaging, and multi-spectral imaging. Compared with conventional methods, the proposed approach demonstrates superior performance on visual effects, contrast, clarity, and the overall efficiency.\",\"PeriodicalId\":39750,\"journal\":{\"name\":\"Machine Graphics and Vision\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Machine Graphics and Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22630/mgv.2023.32.1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Graphics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22630/mgv.2023.32.1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Riesz-Laplace Wavelet Transform and PCNN Based Image Fusion
Important information perceived by human vision comes from the low-level features of the image, which can be extracted by the Riesz transform. In this study, we propose a Riesz transform based approach to image fusion. The image to be fused is first decomposed using the Riesz transform. Then the image sequence obtained in the Riesz transform domain is subjected to the Laplacian wavelet transform based on the fractional Laplacian operators and the multi-harmonic splines. After Laplacian wavelet transform, the image representations have directional and multi-resolution characteristics. Finally, image fusion is performed, leveraging Riesz-Laplace wavelet analysis and the global coupling characteristics of pulse coupled neural network (PCNN). The proposed approach has been tested in several application scenarios, such as multi-focus imaging, medical imaging, remote sensing full-color imaging, and multi-spectral imaging. Compared with conventional methods, the proposed approach demonstrates superior performance on visual effects, contrast, clarity, and the overall efficiency.
期刊介绍:
Machine GRAPHICS & VISION (MGV) is a refereed international journal, published quarterly, providing a scientific exchange forum and an authoritative source of information in the field of, in general, pictorial information exchange between computers and their environment, including applications of visual and graphical computer systems. The journal concentrates on theoretical and computational models underlying computer generated, analysed, or otherwise processed imagery, in particular: - image processing - scene analysis, modeling, and understanding - machine vision - pattern matching and pattern recognition - image synthesis, including three-dimensional imaging and solid modeling