生物基气凝胶:新一代热超绝缘材料

C. Rudaz, A. Demilecamps, G. Pour, M. Alves, A. Rigacci, H. Sallée, G. Reichenauer, T. Budtova
{"title":"生物基气凝胶:新一代热超绝缘材料","authors":"C. Rudaz, A. Demilecamps, G. Pour, M. Alves, A. Rigacci, H. Sallée, G. Reichenauer, T. Budtova","doi":"10.1002/9781119217619.CH15","DOIUrl":null,"url":null,"abstract":"Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air.","PeriodicalId":15213,"journal":{"name":"纤维素科学与技术","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials\",\"authors\":\"C. Rudaz, A. Demilecamps, G. Pour, M. Alves, A. Rigacci, H. Sallée, G. Reichenauer, T. Budtova\",\"doi\":\"10.1002/9781119217619.CH15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air.\",\"PeriodicalId\":15213,\"journal\":{\"name\":\"纤维素科学与技术\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"纤维素科学与技术\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1002/9781119217619.CH15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"纤维素科学与技术","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1002/9781119217619.CH15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

气凝胶是一种多孔、超轻(密度约为0.1 g/cm3)的纳米结构材料。它们最非凡的特性之一是超隔热,即导热系数低于空气:在室内条件下为0.015 vs 0.025 W/(m.K)。然而,传统的二氧化硅气凝胶非常脆弱,有机/合成(间苯二酚-甲醛)气凝胶可能含有有毒成分,这阻碍了它们的广泛应用。生物气凝胶是由生物基聚合物(主要是多糖)制成的新一代气凝胶。以纤维素(aerocellulose / 1,2 /)和果胶(aeropectin /3/)为原料,经聚合物溶解、混凝和超临界CO2干燥制备气凝胶。它们的密度从0.05到0.2 g/cm3不等,比表面积约为200-300 m2/g。生物气凝胶具有很强的机械强度,其杨氏模量为1-2 ~ 20-30 MPa,在孔壁崩溃前的塑性变形可达60-70%。气胶的导热系数约为0.015 - 0.020 W/(m.K),是第一个报道的热超绝缘全生物质气凝胶。由于存在大的大孔隙,航空纤维素的导热系数相当“高”,约为0.030-0.035 W/(m.K)。我们证明,通过使用多糖功能化和制造聚合物-二氧化硅气凝胶杂化,可以改变比表面积(增加到800-900 m2/g)并将气凝胶的导热系数降低到低于空气的导热系数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bio-based Aerogels: A New Generation of Thermal Superinsulating Materials
Aerogels are highly porous, ultra-light (density around 0.1 g/cm3) nanostructured materials. One of their most extraordinary properties is thermal super-insulation, i.e. thermal conductivity below that of the air: 0.015 vs 0.025 W/(m.K) in room conditions. However, classical silica aerogels are extremely fragile and organic/synthetic (resorcinol-formaldehyde) aerogels may include toxic components, which hinders their wide application. Bio-aerogels are a new generation of aerogels made from biomass-based polymers, mainly polysaccharides. We prepared aerogels from cellulose (“aerocellulose” /1, 2/) and pectin (“aeropectin” /3/) via polymer dissolution, coagulation and drying with super-critical CO2. Their density varies from 0.05 to 0.2 g/cm3 and specific surface area is around 200-300 m2/g. Bio-aerogels are mechanically strong, with Young’s moduli from 1-2 to 20-30 MPa and plastic deformation up to 60-70% strain before the pore walls collapse. Aeropectin thermal conductivity turned to be around 0.015 – 0.020 W/(m.K) making it the first reported thermal super-insulating fully biomass-based aerogel. The thermal conductivity of aerocellulose is rather “high”, around 0.030-0.035 W/(m.K), due to the presence of large macropores. We demonstrate that by using polysaccharide functionalization and making polymer-silica aerogel hybrids it is possible to vary specific surface area (increase to 800-900 m2/g) and decrease aerogel thermal conductivity below that of the air.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
1309
期刊介绍:
期刊最新文献
功能化细菌纤维素纳米晶复合聚氨酯医用抗菌涂层的制备及性能研究 Adhesive Mixtures as Sacrificial Substrates in Paper Aging Surface Chemistry and Characterization of Cellulose Nanocrystals High-performance Lignocellulosic Fibers Spun from Ionic Liquid Solution Interaction of Water Molecules with Carboxyalkyl Cellulose
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1