从Sentinel-2检索海岸测深数据的一种方法

D. Raucoules, M. Michele, D. Idier, F. Smaï, M. Foumelis, F. Boulahya, E. Volden, V. Drakopoulou, Przemysław Mujta
{"title":"从Sentinel-2检索海岸测深数据的一种方法","authors":"D. Raucoules, M. Michele, D. Idier, F. Smaï, M. Foumelis, F. Boulahya, E. Volden, V. Drakopoulou, Przemysław Mujta","doi":"10.1109/IGARSS.2019.8898940","DOIUrl":null,"url":null,"abstract":"This paper presents a method for deriving shallow to intermediate (1m to 50m) coastal bathymetry from space-borne multispectral data taking advantage of the short time-lag between sensors’ bands. The idea is to quantify local waves’ characteristics (wavelengths and celerities) that are related to the water depths using optical data: local spectral analysis can provide the significant wavelengths and inter-band offset-tracking and the corresponding celerities (knowing the inter-band time-lag). Such an approach was firstly described in [1]. However, for an application to extended areas and using large data sets (as possible with the Sentinel-2 archive), a faster technique is required: the ability of processing large areas and data acquired at different dates is required for actual operational uses. The approach we propose here is based on Fast Fourier Transform analysis in order to simultaneously extract the wavelengths and celerities.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"36 1","pages":"8193-8196"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bathysent - A Method to Retrieve Coastal Bathymetry from Sentinel-2\",\"authors\":\"D. Raucoules, M. Michele, D. Idier, F. Smaï, M. Foumelis, F. Boulahya, E. Volden, V. Drakopoulou, Przemysław Mujta\",\"doi\":\"10.1109/IGARSS.2019.8898940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method for deriving shallow to intermediate (1m to 50m) coastal bathymetry from space-borne multispectral data taking advantage of the short time-lag between sensors’ bands. The idea is to quantify local waves’ characteristics (wavelengths and celerities) that are related to the water depths using optical data: local spectral analysis can provide the significant wavelengths and inter-band offset-tracking and the corresponding celerities (knowing the inter-band time-lag). Such an approach was firstly described in [1]. However, for an application to extended areas and using large data sets (as possible with the Sentinel-2 archive), a faster technique is required: the ability of processing large areas and data acquired at different dates is required for actual operational uses. The approach we propose here is based on Fast Fourier Transform analysis in order to simultaneously extract the wavelengths and celerities.\",\"PeriodicalId\":13262,\"journal\":{\"name\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"36 1\",\"pages\":\"8193-8196\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS.2019.8898940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用星载多光谱数据获取1米至50米浅层至中层海岸测深数据的方法。我们的想法是利用光学数据量化与水深相关的局部波的特征(波长和速度):局部光谱分析可以提供重要的波长和带间偏移跟踪以及相应的速度(知道带间时滞)。这种方法在文献[1]中有首次描述。然而,对于扩展区域和使用大型数据集(尽可能使用Sentinel-2存档)的应用程序,需要一种更快的技术:实际操作使用需要处理在不同日期获得的大面积和数据的能力。我们在这里提出的方法是基于快速傅立叶变换分析,以同时提取波长和速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bathysent - A Method to Retrieve Coastal Bathymetry from Sentinel-2
This paper presents a method for deriving shallow to intermediate (1m to 50m) coastal bathymetry from space-borne multispectral data taking advantage of the short time-lag between sensors’ bands. The idea is to quantify local waves’ characteristics (wavelengths and celerities) that are related to the water depths using optical data: local spectral analysis can provide the significant wavelengths and inter-band offset-tracking and the corresponding celerities (knowing the inter-band time-lag). Such an approach was firstly described in [1]. However, for an application to extended areas and using large data sets (as possible with the Sentinel-2 archive), a faster technique is required: the ability of processing large areas and data acquired at different dates is required for actual operational uses. The approach we propose here is based on Fast Fourier Transform analysis in order to simultaneously extract the wavelengths and celerities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Question Answering From Remote Sensing Images The Impact of Additive Noise on Polarimetric Radarsat-2 Data Covering Oil Slicks Edge-Convolution Point Net for Semantic Segmentation of Large-Scale Point Clouds Burn Severity Estimation in Northern Australia Tropical Savannas Using Radiative Transfer Model and Sentinel-2 Data The Truth About Ground Truth: Label Noise in Human-Generated Reference Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1