{"title":"水汽对流浅水模式中的东移赤道模式","authors":"M. Rostami, V. Zeitlin","doi":"10.1080/03091929.2020.1805448","DOIUrl":null,"url":null,"abstract":"It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent structures, the equatorial modons, exist in both one- and two layer versions of the rotating shallow water model on the equatorial beta plane. They arise via the process of “ageostrophic adjustment” from the analytic asymptotic modon solutions of the vorticity equation obtained in the limit of small pressure perturbations. Evolution of these structures in adiabatic and moist-convective environments, and also in the presence of topography is analysed, showing their robustness in the one-layer model. It is demonstrated that moist convection enhances and helps maintain the modons. In the two-layer model the barotropic and quasi-barotropic modons display similar to one-layer modon features, while increasing baroclinicity leads to eventual loss of coherence and arrest of the eastward propagation. Some features of equatorial modons resemble those observed in the Madden-Julian Oscillation events in tropical atmosphere, which hints at their possible relevance to the dynamics of this phenomenon.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"30 1","pages":"345 - 367"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Eastward-moving equatorial modons in moist-convective shallow-water models\",\"authors\":\"M. Rostami, V. Zeitlin\",\"doi\":\"10.1080/03091929.2020.1805448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent structures, the equatorial modons, exist in both one- and two layer versions of the rotating shallow water model on the equatorial beta plane. They arise via the process of “ageostrophic adjustment” from the analytic asymptotic modon solutions of the vorticity equation obtained in the limit of small pressure perturbations. Evolution of these structures in adiabatic and moist-convective environments, and also in the presence of topography is analysed, showing their robustness in the one-layer model. It is demonstrated that moist convection enhances and helps maintain the modons. In the two-layer model the barotropic and quasi-barotropic modons display similar to one-layer modon features, while increasing baroclinicity leads to eventual loss of coherence and arrest of the eastward propagation. Some features of equatorial modons resemble those observed in the Madden-Julian Oscillation events in tropical atmosphere, which hints at their possible relevance to the dynamics of this phenomenon.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"30 1\",\"pages\":\"345 - 367\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1805448\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1805448","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Eastward-moving equatorial modons in moist-convective shallow-water models
It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent structures, the equatorial modons, exist in both one- and two layer versions of the rotating shallow water model on the equatorial beta plane. They arise via the process of “ageostrophic adjustment” from the analytic asymptotic modon solutions of the vorticity equation obtained in the limit of small pressure perturbations. Evolution of these structures in adiabatic and moist-convective environments, and also in the presence of topography is analysed, showing their robustness in the one-layer model. It is demonstrated that moist convection enhances and helps maintain the modons. In the two-layer model the barotropic and quasi-barotropic modons display similar to one-layer modon features, while increasing baroclinicity leads to eventual loss of coherence and arrest of the eastward propagation. Some features of equatorial modons resemble those observed in the Madden-Julian Oscillation events in tropical atmosphere, which hints at their possible relevance to the dynamics of this phenomenon.
期刊介绍:
Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects.
In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.