水汽对流浅水模式中的东移赤道模式

IF 1.1 4区 地球科学 Q3 ASTRONOMY & ASTROPHYSICS Geophysical and Astrophysical Fluid Dynamics Pub Date : 2020-08-19 DOI:10.1080/03091929.2020.1805448
M. Rostami, V. Zeitlin
{"title":"水汽对流浅水模式中的东移赤道模式","authors":"M. Rostami, V. Zeitlin","doi":"10.1080/03091929.2020.1805448","DOIUrl":null,"url":null,"abstract":"It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent structures, the equatorial modons, exist in both one- and two layer versions of the rotating shallow water model on the equatorial beta plane. They arise via the process of “ageostrophic adjustment” from the analytic asymptotic modon solutions of the vorticity equation obtained in the limit of small pressure perturbations. Evolution of these structures in adiabatic and moist-convective environments, and also in the presence of topography is analysed, showing their robustness in the one-layer model. It is demonstrated that moist convection enhances and helps maintain the modons. In the two-layer model the barotropic and quasi-barotropic modons display similar to one-layer modon features, while increasing baroclinicity leads to eventual loss of coherence and arrest of the eastward propagation. Some features of equatorial modons resemble those observed in the Madden-Julian Oscillation events in tropical atmosphere, which hints at their possible relevance to the dynamics of this phenomenon.","PeriodicalId":56132,"journal":{"name":"Geophysical and Astrophysical Fluid Dynamics","volume":"30 1","pages":"345 - 367"},"PeriodicalIF":1.1000,"publicationDate":"2020-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Eastward-moving equatorial modons in moist-convective shallow-water models\",\"authors\":\"M. Rostami, V. Zeitlin\",\"doi\":\"10.1080/03091929.2020.1805448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent structures, the equatorial modons, exist in both one- and two layer versions of the rotating shallow water model on the equatorial beta plane. They arise via the process of “ageostrophic adjustment” from the analytic asymptotic modon solutions of the vorticity equation obtained in the limit of small pressure perturbations. Evolution of these structures in adiabatic and moist-convective environments, and also in the presence of topography is analysed, showing their robustness in the one-layer model. It is demonstrated that moist convection enhances and helps maintain the modons. In the two-layer model the barotropic and quasi-barotropic modons display similar to one-layer modon features, while increasing baroclinicity leads to eventual loss of coherence and arrest of the eastward propagation. Some features of equatorial modons resemble those observed in the Madden-Julian Oscillation events in tropical atmosphere, which hints at their possible relevance to the dynamics of this phenomenon.\",\"PeriodicalId\":56132,\"journal\":{\"name\":\"Geophysical and Astrophysical Fluid Dynamics\",\"volume\":\"30 1\",\"pages\":\"345 - 367\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical and Astrophysical Fluid Dynamics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/03091929.2020.1805448\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical and Astrophysical Fluid Dynamics","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/03091929.2020.1805448","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 8

摘要

结果表明,在赤道β平面上旋转浅水模式的一层和两层版本中都存在稳定的大尺度缓慢向东移动的双气旋相干结构——赤道模态。它们是由在小压力扰动极限下得到的涡度方程解析渐近模态解的“地转调整”过程产生的。分析了这些结构在绝热和湿对流环境以及地形存在下的演变,显示了它们在单层模型中的鲁棒性。结果表明,湿对流增强并有助于维持模态。在两层模式中,正压和准正压模式表现出与单层模式相似的特征,而斜压性的增加最终导致相干性的丧失和向东传播的停止。赤道模态的一些特征与在热带大气中观测到的马登-朱利安涛动事件相似,这暗示它们可能与这一现象的动力学有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Eastward-moving equatorial modons in moist-convective shallow-water models
It is shown that steady large-scale slowly eastward-moving twin-cyclone coherent structures, the equatorial modons, exist in both one- and two layer versions of the rotating shallow water model on the equatorial beta plane. They arise via the process of “ageostrophic adjustment” from the analytic asymptotic modon solutions of the vorticity equation obtained in the limit of small pressure perturbations. Evolution of these structures in adiabatic and moist-convective environments, and also in the presence of topography is analysed, showing their robustness in the one-layer model. It is demonstrated that moist convection enhances and helps maintain the modons. In the two-layer model the barotropic and quasi-barotropic modons display similar to one-layer modon features, while increasing baroclinicity leads to eventual loss of coherence and arrest of the eastward propagation. Some features of equatorial modons resemble those observed in the Madden-Julian Oscillation events in tropical atmosphere, which hints at their possible relevance to the dynamics of this phenomenon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical and Astrophysical Fluid Dynamics
Geophysical and Astrophysical Fluid Dynamics 地学天文-地球化学与地球物理
CiteScore
3.10
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: Geophysical and Astrophysical Fluid Dynamics exists for the publication of original research papers and short communications, occasional survey articles and conference reports on the fluid mechanics of the earth and planets, including oceans, atmospheres and interiors, and the fluid mechanics of the sun, stars and other astrophysical objects. In addition, their magnetohydrodynamic behaviours are investigated. Experimental, theoretical and numerical studies of rotating, stratified and convecting fluids of general interest to geophysicists and astrophysicists appear. Properly interpreted observational results are also published.
期刊最新文献
Zonostrophic instabilities in magnetohydrodynamic Kolmogorov flow Scales of vertical motions due to an isolated vortex in ageostrophic balanced flows Can the observable solar activity spectrum be reproduced by a simple dynamo model? Solitary wave scattering by segmented arc-shaped breakwater Self-adjointness of sound-proof models for magnetic buoyancy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1