D. McCormick, N. Tien, N. MacDonald, R. Matthews, A. Hibbs
{"title":"具有太欧姆隔离和低寄生的玻璃上超宽调谐范围硅MEMS电容器","authors":"D. McCormick, N. Tien, N. MacDonald, R. Matthews, A. Hibbs","doi":"10.1109/SENSOR.2005.1496642","DOIUrl":null,"url":null,"abstract":"Theoretical and experimental results of a design methodology and fabrication technology to realize ultrawide tuning range, electrostatic, silicon micromachined capacitors are presented. The varactors achieve a maximum tuning range of approximately 4000% and exhibit a linear tuning range of 1000% (C vs. V/sup 2/). The devices are also designed and characterized with Tera-ohm isolation and sub 30 fF capacitive coupling between the driving actuator and tuning element. In addition, parasitic capacitances have been minimized to less than 22 fF at the tuning element terminals.","PeriodicalId":22359,"journal":{"name":"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.","volume":"46 1","pages":"1075-1079 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Ultra-wide tuning range silicon MEMS capacitors on glass with Tera-ohm isolation and low parasitics\",\"authors\":\"D. McCormick, N. Tien, N. MacDonald, R. Matthews, A. Hibbs\",\"doi\":\"10.1109/SENSOR.2005.1496642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Theoretical and experimental results of a design methodology and fabrication technology to realize ultrawide tuning range, electrostatic, silicon micromachined capacitors are presented. The varactors achieve a maximum tuning range of approximately 4000% and exhibit a linear tuning range of 1000% (C vs. V/sup 2/). The devices are also designed and characterized with Tera-ohm isolation and sub 30 fF capacitive coupling between the driving actuator and tuning element. In addition, parasitic capacitances have been minimized to less than 22 fF at the tuning element terminals.\",\"PeriodicalId\":22359,\"journal\":{\"name\":\"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.\",\"volume\":\"46 1\",\"pages\":\"1075-1079 Vol. 1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SENSOR.2005.1496642\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS '05.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SENSOR.2005.1496642","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
介绍了实现超宽调谐范围的静电硅微机械电容器的设计方法和制造技术的理论和实验结果。该变容管的最大调谐范围约为4000%,线性调谐范围为1000% (C vs. V/sup 2/)。该器件还设计并具有太欧姆隔离和驱动致动器和调谐元件之间低于30ff的电容耦合。此外,调谐元件端子处的寄生电容已减至小于22ff。
Ultra-wide tuning range silicon MEMS capacitors on glass with Tera-ohm isolation and low parasitics
Theoretical and experimental results of a design methodology and fabrication technology to realize ultrawide tuning range, electrostatic, silicon micromachined capacitors are presented. The varactors achieve a maximum tuning range of approximately 4000% and exhibit a linear tuning range of 1000% (C vs. V/sup 2/). The devices are also designed and characterized with Tera-ohm isolation and sub 30 fF capacitive coupling between the driving actuator and tuning element. In addition, parasitic capacitances have been minimized to less than 22 fF at the tuning element terminals.