一类SISO严格反馈非线性系统的神经网络输出反馈跟踪控制

Hui Hu, Zhongxiao Hao, Pengfei Guo, Xilong Qu
{"title":"一类SISO严格反馈非线性系统的神经网络输出反馈跟踪控制","authors":"Hui Hu, Zhongxiao Hao, Pengfei Guo, Xilong Qu","doi":"10.4304/jnw.9.9.2521-2528","DOIUrl":null,"url":null,"abstract":"The paper proposes a new output feedback tracking controller using neural network (NN) for a class of SISO strict-feedback nonlinear systems that only the output variables can be measured. The distinguished aspect of the controller is that no backstepping design is employed, and the strict-feedback systems could be transformed into the standard affine form. The gains of observer and controller are simultaneously tuned according to output tracking error based on non-separation principle design. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. The proposed neural network controller can guarantee that output tracking error and all the states in the closed-loop system are the semi-globally ultimately bounded by Lyapunov approach. Finally the simulation results are used to demonstrate the effectiveness of the control scheme.","PeriodicalId":14643,"journal":{"name":"J. Networks","volume":"32 1","pages":"2521-2528"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Output Feedback Tracking Control Based on Neural Network for a Class of SISO Strict Feedback Nonlinear Systems\",\"authors\":\"Hui Hu, Zhongxiao Hao, Pengfei Guo, Xilong Qu\",\"doi\":\"10.4304/jnw.9.9.2521-2528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a new output feedback tracking controller using neural network (NN) for a class of SISO strict-feedback nonlinear systems that only the output variables can be measured. The distinguished aspect of the controller is that no backstepping design is employed, and the strict-feedback systems could be transformed into the standard affine form. The gains of observer and controller are simultaneously tuned according to output tracking error based on non-separation principle design. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. The proposed neural network controller can guarantee that output tracking error and all the states in the closed-loop system are the semi-globally ultimately bounded by Lyapunov approach. Finally the simulation results are used to demonstrate the effectiveness of the control scheme.\",\"PeriodicalId\":14643,\"journal\":{\"name\":\"J. Networks\",\"volume\":\"32 1\",\"pages\":\"2521-2528\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"J. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4304/jnw.9.9.2521-2528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"J. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4304/jnw.9.9.2521-2528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对一类只有输出变量可测的SISO严格反馈非线性系统,提出了一种新的神经网络输出反馈跟踪控制器。该控制器的特点是不采用反步设计,将严格反馈系统转化为标准仿射形式。基于无分离原理设计,根据输出跟踪误差同时调整观测器和控制器的增益。利用神经网络的普遍逼近性质和同时参数化,不使用Lipschitz假设和SPR条件,使系统结构简单。所提出的神经网络控制器可以保证输出跟踪误差和闭环系统的所有状态都是由Lyapunov方法最终有界的半全局。最后通过仿真结果验证了该控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Output Feedback Tracking Control Based on Neural Network for a Class of SISO Strict Feedback Nonlinear Systems
The paper proposes a new output feedback tracking controller using neural network (NN) for a class of SISO strict-feedback nonlinear systems that only the output variables can be measured. The distinguished aspect of the controller is that no backstepping design is employed, and the strict-feedback systems could be transformed into the standard affine form. The gains of observer and controller are simultaneously tuned according to output tracking error based on non-separation principle design. With the universal approximation property of NN and the simultaneous parametrisation, no Lipschitz assumption and SPR condition are employed which makes the system construct simple. The proposed neural network controller can guarantee that output tracking error and all the states in the closed-loop system are the semi-globally ultimately bounded by Lyapunov approach. Finally the simulation results are used to demonstrate the effectiveness of the control scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Asynchronous Multi-Channel MAC Protocol A Wireless Charging Infrastructure for Future Electrical Vehicular Adhoc Networks Application of Predictive Analytics in Telecommunications Project Management Secondary User Aggressiveness Optimization in Sensing-Transmission Scheduling for Cognitive Radio Networks Enhanced Chunk Regulation Algorithm for Superior QoS in Heterogeneous P2P Video on Demand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1