基于自然语言处理的复杂工程系统早期故障评估知识发现

Sequoia R. Andrade, Hannah S. Walsh
{"title":"基于自然语言处理的复杂工程系统早期故障评估知识发现","authors":"Sequoia R. Andrade, Hannah S. Walsh","doi":"10.1115/detc2021-70694","DOIUrl":null,"url":null,"abstract":"\n Emerging complex engineered systems may have unexpected safety issues due to novel operational environments, increasing autonomy, human-machine interaction, and other factors. To prevent failures in operation or testing that necessitate costly redesign, it is desirable to predict likely failure modes early in the design process. Information about past engineering failures in natural language format presents one possible solution by enabling the retrieval of information that can inform new designs. However, identifying documents containing usable information and extracting the required information can be prohibitively time-consuming when implemented at scale. In this research, an automated natural language processing (NLP) framework is proposed to discover relevant knowledge from documents containing failure-related design information. The framework is applied to NASA’s Lessons Learned Information System (LLIS), which is publicly available. Documents containing usable information are filtered using two different NLP-based models. Next, from the identified usable documents, a failure taxonomy is extracted using a partitioned hierarchical topic modeling approach. Partitions of the document describe different sections of the failure taxonomy — i.e., failure, cause of failure, and recommendations — as indicated by the structure of the original document. The extracted failure taxonomy can be leveraged in early design failure assessment methods. Moreover, the framework can be used to identify documents containing usable failure-related design information from other databases and extract relevant information from these documents.","PeriodicalId":23602,"journal":{"name":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Knowledge Discovery for Early Failure Assessment of Complex Engineered Systems Using Natural Language Processing\",\"authors\":\"Sequoia R. Andrade, Hannah S. Walsh\",\"doi\":\"10.1115/detc2021-70694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Emerging complex engineered systems may have unexpected safety issues due to novel operational environments, increasing autonomy, human-machine interaction, and other factors. To prevent failures in operation or testing that necessitate costly redesign, it is desirable to predict likely failure modes early in the design process. Information about past engineering failures in natural language format presents one possible solution by enabling the retrieval of information that can inform new designs. However, identifying documents containing usable information and extracting the required information can be prohibitively time-consuming when implemented at scale. In this research, an automated natural language processing (NLP) framework is proposed to discover relevant knowledge from documents containing failure-related design information. The framework is applied to NASA’s Lessons Learned Information System (LLIS), which is publicly available. Documents containing usable information are filtered using two different NLP-based models. Next, from the identified usable documents, a failure taxonomy is extracted using a partitioned hierarchical topic modeling approach. Partitions of the document describe different sections of the failure taxonomy — i.e., failure, cause of failure, and recommendations — as indicated by the structure of the original document. The extracted failure taxonomy can be leveraged in early design failure assessment methods. Moreover, the framework can be used to identify documents containing usable failure-related design information from other databases and extract relevant information from these documents.\",\"PeriodicalId\":23602,\"journal\":{\"name\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: 41st Computers and Information in Engineering Conference (CIE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-70694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: 41st Computers and Information in Engineering Conference (CIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-70694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于新的操作环境、日益增强的自主性、人机交互和其他因素,新兴的复杂工程系统可能会出现意想不到的安全问题。为了防止操作或测试中的故障,需要进行昂贵的重新设计,在设计过程的早期预测可能的故障模式是可取的。以自然语言格式提供的有关过去工程失败的信息提供了一种可能的解决方案,即允许检索可以为新设计提供信息的信息。但是,在大规模实现时,识别包含可用信息的文档并提取所需信息可能非常耗时。本研究提出一种自动自然语言处理(NLP)框架,从包含故障相关设计信息的文档中发现相关知识。该框架应用于NASA的经验教训信息系统(LLIS),该系统是公开可用的。包含可用信息的文档使用两种不同的基于nlp的模型进行过滤。接下来,从确定的可用文档中,使用分区分层主题建模方法提取故障分类。文档的分区描述了故障分类的不同部分——例如,故障、故障原因和建议——由原始文档的结构指示。所提取的失效分类可用于早期设计失效评估方法。此外,该框架可用于从其他数据库中识别包含可用的故障相关设计信息的文档,并从这些文档中提取相关信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Knowledge Discovery for Early Failure Assessment of Complex Engineered Systems Using Natural Language Processing
Emerging complex engineered systems may have unexpected safety issues due to novel operational environments, increasing autonomy, human-machine interaction, and other factors. To prevent failures in operation or testing that necessitate costly redesign, it is desirable to predict likely failure modes early in the design process. Information about past engineering failures in natural language format presents one possible solution by enabling the retrieval of information that can inform new designs. However, identifying documents containing usable information and extracting the required information can be prohibitively time-consuming when implemented at scale. In this research, an automated natural language processing (NLP) framework is proposed to discover relevant knowledge from documents containing failure-related design information. The framework is applied to NASA’s Lessons Learned Information System (LLIS), which is publicly available. Documents containing usable information are filtered using two different NLP-based models. Next, from the identified usable documents, a failure taxonomy is extracted using a partitioned hierarchical topic modeling approach. Partitions of the document describe different sections of the failure taxonomy — i.e., failure, cause of failure, and recommendations — as indicated by the structure of the original document. The extracted failure taxonomy can be leveraged in early design failure assessment methods. Moreover, the framework can be used to identify documents containing usable failure-related design information from other databases and extract relevant information from these documents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Bus Factor in Conceptual System Design: Protecting a Design Process Against Major Regional and World Events Exploration of the Digital Innovation Process in the Smart Product-Service System Optimized Torque Assistance During Walking With an Idealized Hip Exoskeleton An Algorithm for Partitioning Objects Into a Cube Skeleton and Segmented Shell Covers for Parallelized Additive Manufacturing Neurocognitive Effects of Incentivizing Students to Improve Performance Through Repeat Attempts in Design Settings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1