E. Winter, I. V. van Geijlswijk, I. Akkerdaas, M. Sturkenboom, R. Gehring
{"title":"曲马多速释胶囊和缓释片在犬体内的稳态药动学研究","authors":"E. Winter, I. V. van Geijlswijk, I. Akkerdaas, M. Sturkenboom, R. Gehring","doi":"10.3390/futurepharmacol2040040","DOIUrl":null,"url":null,"abstract":"Tramadol is a veterinary analgesic for dogs. In this study, the steady-state pharmacokinetics of a sustained-release (SR) tablet (Tramagetic OD®) and immediate-release capsules (IR) were compared. In a crossover design, six dogs received five doses of IR 50 mg four times a day (qid), or two doses of SR 200 mg once a day (sid). Eight blood samples were collected per dog, per formulation, up to 6 and 24 h after the last dose, respectively. Serum concentrations of tramadol and its metabolites were measured with LC-MS/MS. Metabolite M1 levels were below the lower limit of quantification (LLOQ) in all samples. The non-compartmental analysis of the time–concentration data showed a later Tmax with the SR formulation (median 6.00 h (3.00–9.00)) and a lower Cmax/D (median 7.74 µg/L/mg/kg (0.09–25.3)) compared to the IR formulation (median Tmax 1.75 h (0.75–2.00) and median Cmax/D 11.1 µg/L/mg/kg (4.8–70.4)). AUCtau/D after SR administration was 55.5 h × kg × µg/L/mg (0–174.1) compared to 29.8 h × kg × µg/L/mg (12.2–140.8) after IR administration. The terminal elimination half-lives were 2.38 h (1.77–6.22) and 1.70 h (0.95–2.11) for the SR and IR formulations, respectively. Strong conclusions cannot be drawn from this study because of the high percentage of samples that were below LLOQ and the great interindividual variability, but these results suggest that Tramagetic OD can be administered less frequently in dogs.","PeriodicalId":12592,"journal":{"name":"Future Pharmacology","volume":"85 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs\",\"authors\":\"E. Winter, I. V. van Geijlswijk, I. Akkerdaas, M. Sturkenboom, R. Gehring\",\"doi\":\"10.3390/futurepharmacol2040040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Tramadol is a veterinary analgesic for dogs. In this study, the steady-state pharmacokinetics of a sustained-release (SR) tablet (Tramagetic OD®) and immediate-release capsules (IR) were compared. In a crossover design, six dogs received five doses of IR 50 mg four times a day (qid), or two doses of SR 200 mg once a day (sid). Eight blood samples were collected per dog, per formulation, up to 6 and 24 h after the last dose, respectively. Serum concentrations of tramadol and its metabolites were measured with LC-MS/MS. Metabolite M1 levels were below the lower limit of quantification (LLOQ) in all samples. The non-compartmental analysis of the time–concentration data showed a later Tmax with the SR formulation (median 6.00 h (3.00–9.00)) and a lower Cmax/D (median 7.74 µg/L/mg/kg (0.09–25.3)) compared to the IR formulation (median Tmax 1.75 h (0.75–2.00) and median Cmax/D 11.1 µg/L/mg/kg (4.8–70.4)). AUCtau/D after SR administration was 55.5 h × kg × µg/L/mg (0–174.1) compared to 29.8 h × kg × µg/L/mg (12.2–140.8) after IR administration. The terminal elimination half-lives were 2.38 h (1.77–6.22) and 1.70 h (0.95–2.11) for the SR and IR formulations, respectively. Strong conclusions cannot be drawn from this study because of the high percentage of samples that were below LLOQ and the great interindividual variability, but these results suggest that Tramagetic OD can be administered less frequently in dogs.\",\"PeriodicalId\":12592,\"journal\":{\"name\":\"Future Pharmacology\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Future Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/futurepharmacol2040040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/futurepharmacol2040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
摘要
曲马多是一种犬用兽药。本研究比较了一种缓释片(Tramagetic OD®)和速释胶囊(IR)的稳态药代动力学。在交叉设计中,6只狗接受5次剂量的IR 50 mg,每天4次(qid),或2次剂量的SR 200 mg,每天1次(sid)。在最后一次给药后的6和24小时,每只狗分别采集8份血液样本。采用LC-MS/MS法测定曲马多及其代谢产物的血清浓度。所有样品的代谢产物M1水平均低于定量下限(LLOQ)。时间-浓度数据的非区隔分析显示,与IR制剂(Tmax中值1.75 h(0.75-2.00)和Cmax/D中值11.1µg/L/mg/kg(4.8-70.4))相比,SR制剂的Tmax中值较晚(中值6.00 h (3.00-9.00)), Cmax/D中值7.74µg/L/mg/kg(0.09-25.3))。SR给药后AUCtau/D为55.5 h × kg ×µg/L/mg (0 ~ 174.1), IR给药后AUCtau/D为29.8 h × kg ×µg/L/mg(12.2 ~ 140.8)。SR和IR配方的末端消除半衰期分别为2.38 h(1.77 ~ 6.22)和1.70 h(0.95 ~ 2.11)。由于低于LLOQ的样本比例很高,而且个体间差异很大,因此无法从这项研究中得出强有力的结论,但这些结果表明,在狗身上施用Tramagetic OD的频率较低。
Tramadol Steady-State Pharmacokinetics of Immediate-Release Capsules and Sustained-Release Tablets in Dogs
Tramadol is a veterinary analgesic for dogs. In this study, the steady-state pharmacokinetics of a sustained-release (SR) tablet (Tramagetic OD®) and immediate-release capsules (IR) were compared. In a crossover design, six dogs received five doses of IR 50 mg four times a day (qid), or two doses of SR 200 mg once a day (sid). Eight blood samples were collected per dog, per formulation, up to 6 and 24 h after the last dose, respectively. Serum concentrations of tramadol and its metabolites were measured with LC-MS/MS. Metabolite M1 levels were below the lower limit of quantification (LLOQ) in all samples. The non-compartmental analysis of the time–concentration data showed a later Tmax with the SR formulation (median 6.00 h (3.00–9.00)) and a lower Cmax/D (median 7.74 µg/L/mg/kg (0.09–25.3)) compared to the IR formulation (median Tmax 1.75 h (0.75–2.00) and median Cmax/D 11.1 µg/L/mg/kg (4.8–70.4)). AUCtau/D after SR administration was 55.5 h × kg × µg/L/mg (0–174.1) compared to 29.8 h × kg × µg/L/mg (12.2–140.8) after IR administration. The terminal elimination half-lives were 2.38 h (1.77–6.22) and 1.70 h (0.95–2.11) for the SR and IR formulations, respectively. Strong conclusions cannot be drawn from this study because of the high percentage of samples that were below LLOQ and the great interindividual variability, but these results suggest that Tramagetic OD can be administered less frequently in dogs.