基于无距离RSSI指纹法的改进室内定位

IF 0.9 Q4 REMOTE SENSING Journal of Geodetic Science Pub Date : 2020-01-01 DOI:10.1515/jogs-2020-0004
M. Uradziński, Hang Guo, Min Yu
{"title":"基于无距离RSSI指纹法的改进室内定位","authors":"M. Uradziński, Hang Guo, Min Yu","doi":"10.1515/jogs-2020-0004","DOIUrl":null,"url":null,"abstract":"Abstract As the development of modern science and technology, LBS and location-aware computing are increasingly important in the practical applications. Currently, GPS positioning system is a mature positioning technology used widely, but signals are easily absorbed, reflected by buildings, and attenuate seriously. In such situation, GPS positioning is not suitable for using in the indoor environment. Wireless sensor networks, such as ZigBee technology, can provide RSSI (received signal strength indicator) which can be used for positioning, especially indoor positioning, and therefore for location based services (LBS).The authors are focused on the fingerprint database method which is suitable for calculating the coordinates of a pedestrian location. This positioning method can use the signal strength indication between the reference nodes and positioning nodes, and design algorithms for positioning. In the wireless sensor networks, according to whether measuring the distance between the nodes in the positioning process, the positioning modes are divided into two categories which are range-based and range-free positioning modes. This paper describes newly improved indoor positioning method based on RSSI fingerprint database, which is range-free. Presented fingerprint database positioning can provide more accurate positioning results, and the accuracy of establishing fingerprint database will affect the accuracy of indoor positioning. In this paper, we propose a new method about the average threshold and the effective data domain filtering method to optimize the fingerprint database of ZigBee technology. Indoor experiment, which was conducted at the University of Warmia and Mazury, proved that the distance achieved by this system has been extended over 30 meters without decreasing the positioning accuracy. The weighted nearest algorithm was chosen and used to calculate user’s location, and then the results were compared and analyzed. As a result, the positioning accuracy was improved and error did not exceed 0.69 m. Therefore, such system can be easily applied in a bigger space inside the buildings, underground mines or in the other location based services.","PeriodicalId":44569,"journal":{"name":"Journal of Geodetic Science","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved indoor positioning based on range-free RSSI fingerprint method\",\"authors\":\"M. Uradziński, Hang Guo, Min Yu\",\"doi\":\"10.1515/jogs-2020-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract As the development of modern science and technology, LBS and location-aware computing are increasingly important in the practical applications. Currently, GPS positioning system is a mature positioning technology used widely, but signals are easily absorbed, reflected by buildings, and attenuate seriously. In such situation, GPS positioning is not suitable for using in the indoor environment. Wireless sensor networks, such as ZigBee technology, can provide RSSI (received signal strength indicator) which can be used for positioning, especially indoor positioning, and therefore for location based services (LBS).The authors are focused on the fingerprint database method which is suitable for calculating the coordinates of a pedestrian location. This positioning method can use the signal strength indication between the reference nodes and positioning nodes, and design algorithms for positioning. In the wireless sensor networks, according to whether measuring the distance between the nodes in the positioning process, the positioning modes are divided into two categories which are range-based and range-free positioning modes. This paper describes newly improved indoor positioning method based on RSSI fingerprint database, which is range-free. Presented fingerprint database positioning can provide more accurate positioning results, and the accuracy of establishing fingerprint database will affect the accuracy of indoor positioning. In this paper, we propose a new method about the average threshold and the effective data domain filtering method to optimize the fingerprint database of ZigBee technology. Indoor experiment, which was conducted at the University of Warmia and Mazury, proved that the distance achieved by this system has been extended over 30 meters without decreasing the positioning accuracy. The weighted nearest algorithm was chosen and used to calculate user’s location, and then the results were compared and analyzed. As a result, the positioning accuracy was improved and error did not exceed 0.69 m. Therefore, such system can be easily applied in a bigger space inside the buildings, underground mines or in the other location based services.\",\"PeriodicalId\":44569,\"journal\":{\"name\":\"Journal of Geodetic Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geodetic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jogs-2020-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"REMOTE SENSING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodetic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jogs-2020-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2

摘要

随着现代科学技术的发展,LBS和位置感知计算在实际应用中越来越重要。GPS定位系统是目前应用广泛的成熟定位技术,但信号容易被建筑物吸收、反射,衰减严重。在这种情况下,GPS定位不适合在室内环境中使用。无线传感器网络,如ZigBee技术,可以提供RSSI(接收信号强度指示器),可用于定位,特别是室内定位,因此可用于基于位置的服务(LBS)。重点研究了适用于行人位置坐标计算的指纹库方法。该定位方法利用参考节点与定位节点之间的信号强度指示,设计定位算法。在无线传感器网络中,根据定位过程中是否测量节点之间的距离,将定位模式分为基于距离的定位模式和无距离的定位模式两大类。本文介绍了一种新的基于RSSI指纹库的无距离室内定位方法。所提出的指纹库定位可以提供更准确的定位结果,而指纹库建立的准确性会影响室内定位的准确性。本文提出了一种新的基于平均阈值和有效数据域滤波的方法来优化ZigBee技术的指纹数据库。在瓦姆米亚和马祖里大学进行的室内实验证明,该系统的定位距离在不降低定位精度的情况下延长了30米以上。选择加权最近邻算法计算用户位置,并对结果进行比较分析。提高了定位精度,误差不超过0.69 m。因此,这种系统可以很容易地应用于建筑物内更大的空间,地下矿山或其他基于位置的服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved indoor positioning based on range-free RSSI fingerprint method
Abstract As the development of modern science and technology, LBS and location-aware computing are increasingly important in the practical applications. Currently, GPS positioning system is a mature positioning technology used widely, but signals are easily absorbed, reflected by buildings, and attenuate seriously. In such situation, GPS positioning is not suitable for using in the indoor environment. Wireless sensor networks, such as ZigBee technology, can provide RSSI (received signal strength indicator) which can be used for positioning, especially indoor positioning, and therefore for location based services (LBS).The authors are focused on the fingerprint database method which is suitable for calculating the coordinates of a pedestrian location. This positioning method can use the signal strength indication between the reference nodes and positioning nodes, and design algorithms for positioning. In the wireless sensor networks, according to whether measuring the distance between the nodes in the positioning process, the positioning modes are divided into two categories which are range-based and range-free positioning modes. This paper describes newly improved indoor positioning method based on RSSI fingerprint database, which is range-free. Presented fingerprint database positioning can provide more accurate positioning results, and the accuracy of establishing fingerprint database will affect the accuracy of indoor positioning. In this paper, we propose a new method about the average threshold and the effective data domain filtering method to optimize the fingerprint database of ZigBee technology. Indoor experiment, which was conducted at the University of Warmia and Mazury, proved that the distance achieved by this system has been extended over 30 meters without decreasing the positioning accuracy. The weighted nearest algorithm was chosen and used to calculate user’s location, and then the results were compared and analyzed. As a result, the positioning accuracy was improved and error did not exceed 0.69 m. Therefore, such system can be easily applied in a bigger space inside the buildings, underground mines or in the other location based services.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geodetic Science
Journal of Geodetic Science REMOTE SENSING-
CiteScore
1.90
自引率
7.70%
发文量
3
审稿时长
14 weeks
期刊最新文献
Displacement analysis of the October 30, 2020 (M w = 6.9), Samos (Aegean Sea) earthquake A field test of compact active transponders for InSAR geodesy Estimating the slip rate in the North Tabriz Fault using focal mechanism data and GPS velocity field Simulating VLBI observations to BeiDou and Galileo satellites in L-band for frame ties On initial data in adjustments of the geometric levelling networks (on the mean of paired observations)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1