{"title":"基于频域前导的LoRa信道估计与均衡","authors":"V. Savaux, Patrick Savelli","doi":"10.36227/techrxiv.16760101","DOIUrl":null,"url":null,"abstract":"This paper deals with multipath channel estimation and equalization in LoRa. It is suggested to take advantage of the cyclic property of the symbols in the LoRa frame preamble to obtain an interference-free version of the symbols in the frequency domain. Then, estimation methods used in multicarrier systems can be applied, such as the least square (LS), and the minimum mean square error (MMSE) estimators. It is shown that the cyclic property in LoRa is inherently independent of the length of the channel, making these estimation techniques robust to any frequency-selective channel. In addition the frequency domain zero-forcing (ZF) equalizer is used, and an original phase equalizer is introduced, taking advantage of the constant modulus property of LoRa symbols in the frequency domain. The performance of the investigated estimators and equalizers is shown through simulations, and applications to the presented results are further discussed.","PeriodicalId":35022,"journal":{"name":"International Journal of Mobile Network Design and Innovation","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Frequency Domain Preamble-Based Channel Estimation and Equalization in LoRa\",\"authors\":\"V. Savaux, Patrick Savelli\",\"doi\":\"10.36227/techrxiv.16760101\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with multipath channel estimation and equalization in LoRa. It is suggested to take advantage of the cyclic property of the symbols in the LoRa frame preamble to obtain an interference-free version of the symbols in the frequency domain. Then, estimation methods used in multicarrier systems can be applied, such as the least square (LS), and the minimum mean square error (MMSE) estimators. It is shown that the cyclic property in LoRa is inherently independent of the length of the channel, making these estimation techniques robust to any frequency-selective channel. In addition the frequency domain zero-forcing (ZF) equalizer is used, and an original phase equalizer is introduced, taking advantage of the constant modulus property of LoRa symbols in the frequency domain. The performance of the investigated estimators and equalizers is shown through simulations, and applications to the presented results are further discussed.\",\"PeriodicalId\":35022,\"journal\":{\"name\":\"International Journal of Mobile Network Design and Innovation\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mobile Network Design and Innovation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36227/techrxiv.16760101\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mobile Network Design and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36227/techrxiv.16760101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
Frequency Domain Preamble-Based Channel Estimation and Equalization in LoRa
This paper deals with multipath channel estimation and equalization in LoRa. It is suggested to take advantage of the cyclic property of the symbols in the LoRa frame preamble to obtain an interference-free version of the symbols in the frequency domain. Then, estimation methods used in multicarrier systems can be applied, such as the least square (LS), and the minimum mean square error (MMSE) estimators. It is shown that the cyclic property in LoRa is inherently independent of the length of the channel, making these estimation techniques robust to any frequency-selective channel. In addition the frequency domain zero-forcing (ZF) equalizer is used, and an original phase equalizer is introduced, taking advantage of the constant modulus property of LoRa symbols in the frequency domain. The performance of the investigated estimators and equalizers is shown through simulations, and applications to the presented results are further discussed.
期刊介绍:
The IJMNDI addresses the state-of-the-art in computerisation for the deployment and operation of current and future wireless networks. Following the trend in many other engineering disciplines, intelligent and automatic computer software has become the critical factor for obtaining high performance network solutions that meet the objectives of both the network subscriber and operator. Characteristically, high performance and innovative techniques are required to address computationally intensive radio engineering planning problems while providing optimised solutions and knowledge which will enhance the deployment and operation of expensive wireless resources.