{"title":"高通量测序揭示影响鸡卵泡发育的mirna","authors":"Quan Zhang, L. Shanshan, B. Du","doi":"10.11648/J.IJGG.20170506.12","DOIUrl":null,"url":null,"abstract":"As the derivative of chicken skin, hair follicle is capable of self-renew. Its proliferation and differentiation result in hair formation. MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development. In this study, we used next generation sequencing technology sequenced miRNAs of the hair follicle derived from the 13 day-old chicken (Gallus gallus) embryos in which from Kirin chicken and Huaixiang chicken that feathers having morphogenesis with significantly different curling. A population of conserved miRNAs was identified. These conserved miRNAs were derived from 638 homologous hairpin precursors across 5 animal species. We identified a total of 645 miRNAs in the chicken embryos. Among them, 11 differentially expressed miRNAs were identified (> ±2 Fold, p value <0.05) by comparing Kirin chicken and Huaixiang chicken. Several gene ontology (GO) biology processes and the WNT, BMP and TGF-β signaling pathways were found to be differentially expressed miRNAs as part of hair follicle development process. The miR-1623 has an effect on WNT4 and involved in hair follicle cell development. This study has identified miRNAs that associated with the chick embryonic hair follicle development and identified some target miRNAs for further research into their role played in feather growth.","PeriodicalId":88902,"journal":{"name":"International journal of genetics and molecular biology","volume":"236 1","pages":"76"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"High-Throughput Sequencing Reveals miRNAs Affecting Follicle Development in Chicken\",\"authors\":\"Quan Zhang, L. Shanshan, B. Du\",\"doi\":\"10.11648/J.IJGG.20170506.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the derivative of chicken skin, hair follicle is capable of self-renew. Its proliferation and differentiation result in hair formation. MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development. In this study, we used next generation sequencing technology sequenced miRNAs of the hair follicle derived from the 13 day-old chicken (Gallus gallus) embryos in which from Kirin chicken and Huaixiang chicken that feathers having morphogenesis with significantly different curling. A population of conserved miRNAs was identified. These conserved miRNAs were derived from 638 homologous hairpin precursors across 5 animal species. We identified a total of 645 miRNAs in the chicken embryos. Among them, 11 differentially expressed miRNAs were identified (> ±2 Fold, p value <0.05) by comparing Kirin chicken and Huaixiang chicken. Several gene ontology (GO) biology processes and the WNT, BMP and TGF-β signaling pathways were found to be differentially expressed miRNAs as part of hair follicle development process. The miR-1623 has an effect on WNT4 and involved in hair follicle cell development. This study has identified miRNAs that associated with the chick embryonic hair follicle development and identified some target miRNAs for further research into their role played in feather growth.\",\"PeriodicalId\":88902,\"journal\":{\"name\":\"International journal of genetics and molecular biology\",\"volume\":\"236 1\",\"pages\":\"76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of genetics and molecular biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJGG.20170506.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of genetics and molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJGG.20170506.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-Throughput Sequencing Reveals miRNAs Affecting Follicle Development in Chicken
As the derivative of chicken skin, hair follicle is capable of self-renew. Its proliferation and differentiation result in hair formation. MicroRNAs (miRNAs) can effectively regulate gene expression at the post-transcriptional level and play a critical role in tissue growth, development. In this study, we used next generation sequencing technology sequenced miRNAs of the hair follicle derived from the 13 day-old chicken (Gallus gallus) embryos in which from Kirin chicken and Huaixiang chicken that feathers having morphogenesis with significantly different curling. A population of conserved miRNAs was identified. These conserved miRNAs were derived from 638 homologous hairpin precursors across 5 animal species. We identified a total of 645 miRNAs in the chicken embryos. Among them, 11 differentially expressed miRNAs were identified (> ±2 Fold, p value <0.05) by comparing Kirin chicken and Huaixiang chicken. Several gene ontology (GO) biology processes and the WNT, BMP and TGF-β signaling pathways were found to be differentially expressed miRNAs as part of hair follicle development process. The miR-1623 has an effect on WNT4 and involved in hair follicle cell development. This study has identified miRNAs that associated with the chick embryonic hair follicle development and identified some target miRNAs for further research into their role played in feather growth.