也门塔伊兹上拉斯扬含水层南部含氟量的GIS与统计评价

IF 2.4 Q2 WATER RESOURCES Australasian Journal of Water Resources Pub Date : 2020-04-01 DOI:10.5772/intechopen.91329
R. Naser, Mohammed Bakkali, D. Belghyti
{"title":"也门塔伊兹上拉斯扬含水层南部含氟量的GIS与统计评价","authors":"R. Naser, Mohammed Bakkali, D. Belghyti","doi":"10.5772/intechopen.91329","DOIUrl":null,"url":null,"abstract":"Fluorosis continues to be an endemic problem in Yemen. More areas are being affected by fluorosis in different parts of this country. The present study aims to identify the intensity and the spatial extent of fluoride concentration in groundwater of the southern part of the upper Wadi Rasyan, Taiz, Yemen. 93 sampling points were selected; the sampling included all types of sources of groundwater and all types of aquifers. The results show that 71% of samples exceed the WHO drinking water guidelines value of 1.5 mg/l, and there are wide variation for groundwater’s content of fluoride in the same aquifer (whether, volcanic and alluvial) and in the same of groundwater type, and these variations between the different water types or between the different depths of water (alluvial and volcanic aquifers) are not significantly different. The high concentration of fluoride in groundwater of the volcanic aquifer is likely because of the nature of geology formations by the water-rock interaction result of long-time residence of water in contact with the geology formation. The high concentration of fluoride in the alluvial aquifer likely resulting the waste of urban and industrial activates sources, the over exploration of groundwater, the arid climatic and the activities agriculture.","PeriodicalId":51870,"journal":{"name":"Australasian Journal of Water Resources","volume":"33 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2020-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"GIS and Statistical Evaluation of Fluoride Content in Southern Part of Upper Rasyan Aquifer, Taiz, Yemen\",\"authors\":\"R. Naser, Mohammed Bakkali, D. Belghyti\",\"doi\":\"10.5772/intechopen.91329\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorosis continues to be an endemic problem in Yemen. More areas are being affected by fluorosis in different parts of this country. The present study aims to identify the intensity and the spatial extent of fluoride concentration in groundwater of the southern part of the upper Wadi Rasyan, Taiz, Yemen. 93 sampling points were selected; the sampling included all types of sources of groundwater and all types of aquifers. The results show that 71% of samples exceed the WHO drinking water guidelines value of 1.5 mg/l, and there are wide variation for groundwater’s content of fluoride in the same aquifer (whether, volcanic and alluvial) and in the same of groundwater type, and these variations between the different water types or between the different depths of water (alluvial and volcanic aquifers) are not significantly different. The high concentration of fluoride in groundwater of the volcanic aquifer is likely because of the nature of geology formations by the water-rock interaction result of long-time residence of water in contact with the geology formation. The high concentration of fluoride in the alluvial aquifer likely resulting the waste of urban and industrial activates sources, the over exploration of groundwater, the arid climatic and the activities agriculture.\",\"PeriodicalId\":51870,\"journal\":{\"name\":\"Australasian Journal of Water Resources\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2020-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australasian Journal of Water Resources\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.91329\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"WATER RESOURCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australasian Journal of Water Resources","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.91329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 2

摘要

氟中毒仍然是也门的一个地方性问题。在这个国家的不同地区,越来越多的地区受到氟中毒的影响。本研究旨在确定也门塔伊兹河上游拉斯扬河南段地下水中氟浓度的强度和空间范围,选取93个采样点;采样包括所有类型的地下水和所有类型的含水层。结果表明,71%的样品超过了WHO饮用水指导值1.5 mg/l,同一含水层(无论是火山含水层还是冲积含水层)和同一地下水类型的地下水氟化物含量存在较大差异,不同水类型之间或不同水深度(冲积含水层和火山含水层)之间的差异不显著。火山含水层地下水中氟化物含量高的原因可能是地质地层的性质,是水与地质地层长期接触的水岩相互作用的结果。冲积含水层中氟化物的高浓度可能导致城市和工业活性源的浪费、地下水的过度开采、干旱气候和农业活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
GIS and Statistical Evaluation of Fluoride Content in Southern Part of Upper Rasyan Aquifer, Taiz, Yemen
Fluorosis continues to be an endemic problem in Yemen. More areas are being affected by fluorosis in different parts of this country. The present study aims to identify the intensity and the spatial extent of fluoride concentration in groundwater of the southern part of the upper Wadi Rasyan, Taiz, Yemen. 93 sampling points were selected; the sampling included all types of sources of groundwater and all types of aquifers. The results show that 71% of samples exceed the WHO drinking water guidelines value of 1.5 mg/l, and there are wide variation for groundwater’s content of fluoride in the same aquifer (whether, volcanic and alluvial) and in the same of groundwater type, and these variations between the different water types or between the different depths of water (alluvial and volcanic aquifers) are not significantly different. The high concentration of fluoride in groundwater of the volcanic aquifer is likely because of the nature of geology formations by the water-rock interaction result of long-time residence of water in contact with the geology formation. The high concentration of fluoride in the alluvial aquifer likely resulting the waste of urban and industrial activates sources, the over exploration of groundwater, the arid climatic and the activities agriculture.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
21.90%
发文量
25
期刊介绍: The Australasian Journal of Water Resources ( AJWR) is a multi-disciplinary regional journal dedicated to scholarship, professional practice and discussion on water resources planning, management and policy. Its primary geographic focus is on Australia, New Zealand and the Pacific Islands. Papers from outside this region will also be welcomed if they contribute to an understanding of water resources issues in the region. Such contributions could be due to innovations applicable to the Australasian water community, or where clear linkages between studies in other parts of the world are linked to important issues or water planning, management, development and policy challenges in Australasia. These could include papers on global issues where Australasian impacts are clearly identified.
期刊最新文献
Artificial Intelligence of Things (AIoT)-oriented framework for blockage assessment at cross-drainage hydraulic structures Comment on sustainable salinity management in ‘the three-infrastructures framework and water risks in the Murray-Darling Basin, Australia’ by Williams et al. (2022) Wivenhoe, January 2011: the dam truth How well is the basin plan meeting its objectives? From the perspective of the Coorong, a sentinel of change in the Murray-Darling Basin The SWTools R package for SILO data acquisition, homogeneity testing and correction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1