{"title":"滑模控制的深入分析及其在机器人中的应用","authors":"I. O. Bucak","doi":"10.5772/intechopen.93027","DOIUrl":null,"url":null,"abstract":"In this study, a sliding mode control scheme with a bounded region and its convergence analysis are explained to the finest detail and are applied to robotic manipulators which represent the best examples for strongly coupled, highly nonlinear, time-varying dynamical systems. Simulation studies have been applied separately to two different control systems in order to demonstrate the feasibility, performance, and effectiveness of the proposed control methodology through the design of the sliding mode controller: firstly, the position control of an armature-controlled dc servo motor subject to a varying external disturbance, and secondly, a two-link robot manipulator that were also analyzed in terms of its robustness by adding extra mass to one of the joints to be able to maintain the trajectory in the sliding surface. Simulations show that a fast convergence rate, and therefore quick response, the ability to reject the varying external disturbances, and the robustness against the model uncertainty assumed to be unbounded and fast-varying have all achieved its purpose entirely. This study also examines the advantages of SMC and PID comparably. The results given here do not contradict the view that one can use it instead of the other without losing too much performance, and confirm the success of the presented approach.","PeriodicalId":45089,"journal":{"name":"International Journal of Automation and Control","volume":"1 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2020-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An In-Depth Analysis of Sliding Mode Control and Its Application to Robotics\",\"authors\":\"I. O. Bucak\",\"doi\":\"10.5772/intechopen.93027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a sliding mode control scheme with a bounded region and its convergence analysis are explained to the finest detail and are applied to robotic manipulators which represent the best examples for strongly coupled, highly nonlinear, time-varying dynamical systems. Simulation studies have been applied separately to two different control systems in order to demonstrate the feasibility, performance, and effectiveness of the proposed control methodology through the design of the sliding mode controller: firstly, the position control of an armature-controlled dc servo motor subject to a varying external disturbance, and secondly, a two-link robot manipulator that were also analyzed in terms of its robustness by adding extra mass to one of the joints to be able to maintain the trajectory in the sliding surface. Simulations show that a fast convergence rate, and therefore quick response, the ability to reject the varying external disturbances, and the robustness against the model uncertainty assumed to be unbounded and fast-varying have all achieved its purpose entirely. This study also examines the advantages of SMC and PID comparably. The results given here do not contradict the view that one can use it instead of the other without losing too much performance, and confirm the success of the presented approach.\",\"PeriodicalId\":45089,\"journal\":{\"name\":\"International Journal of Automation and Control\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2020-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Automation and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.93027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automation and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.93027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
An In-Depth Analysis of Sliding Mode Control and Its Application to Robotics
In this study, a sliding mode control scheme with a bounded region and its convergence analysis are explained to the finest detail and are applied to robotic manipulators which represent the best examples for strongly coupled, highly nonlinear, time-varying dynamical systems. Simulation studies have been applied separately to two different control systems in order to demonstrate the feasibility, performance, and effectiveness of the proposed control methodology through the design of the sliding mode controller: firstly, the position control of an armature-controlled dc servo motor subject to a varying external disturbance, and secondly, a two-link robot manipulator that were also analyzed in terms of its robustness by adding extra mass to one of the joints to be able to maintain the trajectory in the sliding surface. Simulations show that a fast convergence rate, and therefore quick response, the ability to reject the varying external disturbances, and the robustness against the model uncertainty assumed to be unbounded and fast-varying have all achieved its purpose entirely. This study also examines the advantages of SMC and PID comparably. The results given here do not contradict the view that one can use it instead of the other without losing too much performance, and confirm the success of the presented approach.
期刊介绍:
IJAAC addresses the evolution and realisation of the theory, algorithms, techniques, schemes and tools for any kind of automation and control platforms including macro, micro and nano scale machineries and systems, with emphasis on implications that state-of-the-art technology choices have on both the feasibility and practicability of the intended applications. This perspective acknowledges the complexity of the automation, instrumentation and process control methods and delineates itself as an interface between the theory and practice existing in parallel over diverse spheres. Topics covered include: -Control theory and practice- Identification and modelling- Mechatronics- Application of soft computing- Real-time issues- Distributed control and remote monitoring- System integration- Fault detection and isolation (FDI)- Virtual instrumentation and control- Fieldbus technology and interfaces- Agriculture, environment, health applications- Industry, military, space applications