局部污染物形成的精细尺度环境梯度对流水生态系统中的浮游动物群落影响很大

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2018-05-03 DOI:10.3354/AB00695
Heng Peng, W. Xiong, A. Zhan
{"title":"局部污染物形成的精细尺度环境梯度对流水生态系统中的浮游动物群落影响很大","authors":"Heng Peng, W. Xiong, A. Zhan","doi":"10.3354/AB00695","DOIUrl":null,"url":null,"abstract":"Many freshwater ecosystems suffer from multiple environmental stressors derived from anthropogenic activities. It is therefore necessary to investigate how environmental changes influence composition and functioning of biological communities such as zooplankton. At fine geographical scales, a well-known view on meta-community dynamics suggests that high dispersal can strongly homogenize community structure along water flows, largely erasing signals left by species sorting. However, a recent study by Xiong et al. (2017; Mol Ecol 26:4351−4360) challenges this view, showing that species sorting derived from an environmental gradient overrode the process of dispersal to determine the zooplankton community structure in running river ecosystems at fine geographical scales (the fine-scale species sorting hypothesis). Here we chose zooplankton communities from Fuyang River in north China to test the newly proposed hypothesis and identified the environmental factors contributing to meta-community dynamics in running water ecosystems. Multiple analyses based on high-throughput sequencing showed significantly varied zooplankton community composition and geographical distribution determined by an environmental gradient. Our study clearly shows that local chemical pollution, such as metal pollutants Cu and Mg, largely contributes to the observed patterns. Our study successfully identified local pollutants that influenced meta-community dynamics. Thus, we support the fine-scale species sorting hypothesis, indicating that a strong environmental gradient at fine geographical scales can strengthen the process of species sorting. As many rivers suffer from anthropogenic environ mental stressors, an urgent need exists to integrate both environmental and community infor mation when investigating how environmental changes influence community composition and functioning.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fine-scale environmental gradients formed by local pollutants largely impact zooplankton communities in running water ecosystems\",\"authors\":\"Heng Peng, W. Xiong, A. Zhan\",\"doi\":\"10.3354/AB00695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many freshwater ecosystems suffer from multiple environmental stressors derived from anthropogenic activities. It is therefore necessary to investigate how environmental changes influence composition and functioning of biological communities such as zooplankton. At fine geographical scales, a well-known view on meta-community dynamics suggests that high dispersal can strongly homogenize community structure along water flows, largely erasing signals left by species sorting. However, a recent study by Xiong et al. (2017; Mol Ecol 26:4351−4360) challenges this view, showing that species sorting derived from an environmental gradient overrode the process of dispersal to determine the zooplankton community structure in running river ecosystems at fine geographical scales (the fine-scale species sorting hypothesis). Here we chose zooplankton communities from Fuyang River in north China to test the newly proposed hypothesis and identified the environmental factors contributing to meta-community dynamics in running water ecosystems. Multiple analyses based on high-throughput sequencing showed significantly varied zooplankton community composition and geographical distribution determined by an environmental gradient. Our study clearly shows that local chemical pollution, such as metal pollutants Cu and Mg, largely contributes to the observed patterns. Our study successfully identified local pollutants that influenced meta-community dynamics. Thus, we support the fine-scale species sorting hypothesis, indicating that a strong environmental gradient at fine geographical scales can strengthen the process of species sorting. As many rivers suffer from anthropogenic environ mental stressors, an urgent need exists to integrate both environmental and community infor mation when investigating how environmental changes influence community composition and functioning.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3354/AB00695\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3354/AB00695","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 11

摘要

许多淡水生态系统受到来自人类活动的多种环境压力。因此,有必要研究环境变化如何影响浮游动物等生物群落的组成和功能。在精细的地理尺度上,一个著名的关于元群落动力学的观点认为,高度分散可以使群落结构沿水流强烈地均匀化,在很大程度上消除了物种分选留下的信号。然而,Xiong等人(2017;Mol Ecol 26:4351−4360)挑战了这一观点,表明来自环境梯度的物种分选在精细地理尺度上决定了河流生态系统中浮游动物群落结构(精细尺度物种分选假说)。本文以阜阳河浮游动物群落为研究对象,对上述假设进行了验证,并对影响水体生态系统元群落动态的环境因子进行了分析。基于高通量测序的多重分析显示,环境梯度决定了浮游动物群落组成和地理分布的显著变化。我们的研究清楚地表明,当地的化学污染,如金属污染物Cu和Mg,在很大程度上促成了观察到的模式。我们的研究成功地确定了影响元群落动态的当地污染物。因此,我们支持精细尺度物种分选假说,表明在精细地理尺度上强的环境梯度可以加强物种分选过程。由于许多河流受到人为的环境压力,在调查环境变化如何影响群落组成和功能时,迫切需要将环境和社区信息结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fine-scale environmental gradients formed by local pollutants largely impact zooplankton communities in running water ecosystems
Many freshwater ecosystems suffer from multiple environmental stressors derived from anthropogenic activities. It is therefore necessary to investigate how environmental changes influence composition and functioning of biological communities such as zooplankton. At fine geographical scales, a well-known view on meta-community dynamics suggests that high dispersal can strongly homogenize community structure along water flows, largely erasing signals left by species sorting. However, a recent study by Xiong et al. (2017; Mol Ecol 26:4351−4360) challenges this view, showing that species sorting derived from an environmental gradient overrode the process of dispersal to determine the zooplankton community structure in running river ecosystems at fine geographical scales (the fine-scale species sorting hypothesis). Here we chose zooplankton communities from Fuyang River in north China to test the newly proposed hypothesis and identified the environmental factors contributing to meta-community dynamics in running water ecosystems. Multiple analyses based on high-throughput sequencing showed significantly varied zooplankton community composition and geographical distribution determined by an environmental gradient. Our study clearly shows that local chemical pollution, such as metal pollutants Cu and Mg, largely contributes to the observed patterns. Our study successfully identified local pollutants that influenced meta-community dynamics. Thus, we support the fine-scale species sorting hypothesis, indicating that a strong environmental gradient at fine geographical scales can strengthen the process of species sorting. As many rivers suffer from anthropogenic environ mental stressors, an urgent need exists to integrate both environmental and community infor mation when investigating how environmental changes influence community composition and functioning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1