利用自组织地图识别降水模式并评估其对巴西水文盆地的影响

Pub Date : 2022-01-01 DOI:10.1590/2318-0331.272220220051
Yoshiaki Sakagami, Vinicius Nunes Folganes, C. A. Penz, Murilo Reolon Scuzziato, F.Y.K. Takigawa
{"title":"利用自组织地图识别降水模式并评估其对巴西水文盆地的影响","authors":"Yoshiaki Sakagami, Vinicius Nunes Folganes, C. A. Penz, Murilo Reolon Scuzziato, F.Y.K. Takigawa","doi":"10.1590/2318-0331.272220220051","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, we used neural networks known as self-organizing maps (SOMs) to identify clusters of spatial synoptic precipitation patterns. These clusters were compared with the precipitation regime of the ten main hydrographic sub-basins in Brazil. Sixty years of daily precipitation data obtained from over 389 weather station in Brazil were used as input data for the SOMs, with a number of six clusters being prescribed as the optimal number according to the elbow and silhouette methods. The six precipitation patterns identified by the SOMs reflect the typical synoptic conditions associated mainly with the cold frontal systems (CF), South American Monsoon System (SAMS) and Inter-tropical Convergence Zone (ITCZ). In conclusion, SOMs perform well using interpolated precipitation data as the input data to identify synoptic precipitation patterns, which could be used to monitor the spatial distribution of precipitation, which affects the hydrographic basins in Brazil and hence hydropower plant performance.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Use of self organizing map to identify precipitation patterns and assess their impact on hydrographic basins in Brazil\",\"authors\":\"Yoshiaki Sakagami, Vinicius Nunes Folganes, C. A. Penz, Murilo Reolon Scuzziato, F.Y.K. Takigawa\",\"doi\":\"10.1590/2318-0331.272220220051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, we used neural networks known as self-organizing maps (SOMs) to identify clusters of spatial synoptic precipitation patterns. These clusters were compared with the precipitation regime of the ten main hydrographic sub-basins in Brazil. Sixty years of daily precipitation data obtained from over 389 weather station in Brazil were used as input data for the SOMs, with a number of six clusters being prescribed as the optimal number according to the elbow and silhouette methods. The six precipitation patterns identified by the SOMs reflect the typical synoptic conditions associated mainly with the cold frontal systems (CF), South American Monsoon System (SAMS) and Inter-tropical Convergence Zone (ITCZ). In conclusion, SOMs perform well using interpolated precipitation data as the input data to identify synoptic precipitation patterns, which could be used to monitor the spatial distribution of precipitation, which affects the hydrographic basins in Brazil and hence hydropower plant performance.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1590/2318-0331.272220220051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/2318-0331.272220220051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们使用自组织图(SOMs)神经网络来识别空间天气降水模式簇。这些集群与巴西10个主要水文子盆地的降水状况进行了比较。利用巴西389个气象站60年的日降水数据作为SOMs的输入数据,根据肘形法和廓形法确定了6个簇的数量作为最优数量。由SOMs识别的6种降水模式反映了主要与冷锋系统(CF)、南美季风系统(SAMS)和热带辐合带(ITCZ)有关的典型天气条件。综上所述,利用插值降水数据作为输入数据,SOMs可以很好地识别天气降水模式,这些模式可以用来监测降水的空间分布,从而影响巴西的水文流域,从而影响水电站的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
Use of self organizing map to identify precipitation patterns and assess their impact on hydrographic basins in Brazil
ABSTRACT In this study, we used neural networks known as self-organizing maps (SOMs) to identify clusters of spatial synoptic precipitation patterns. These clusters were compared with the precipitation regime of the ten main hydrographic sub-basins in Brazil. Sixty years of daily precipitation data obtained from over 389 weather station in Brazil were used as input data for the SOMs, with a number of six clusters being prescribed as the optimal number according to the elbow and silhouette methods. The six precipitation patterns identified by the SOMs reflect the typical synoptic conditions associated mainly with the cold frontal systems (CF), South American Monsoon System (SAMS) and Inter-tropical Convergence Zone (ITCZ). In conclusion, SOMs perform well using interpolated precipitation data as the input data to identify synoptic precipitation patterns, which could be used to monitor the spatial distribution of precipitation, which affects the hydrographic basins in Brazil and hence hydropower plant performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1