{"title":"改善粘土工程性能的物化稳定研究进展","authors":"Ahmed Bukhary, S. Azam","doi":"10.3390/geotechnics3030041","DOIUrl":null,"url":null,"abstract":"Severe climatic and environmental conditions warrant the use of stabilization agents in aid of compaction for sustainable improvement in engineering properties of clays. Physicochemical agents are a viable option because they are cost effective, environmentally friendly, and offer improved long-term performance of treated soils. This research developed a fundamental understanding of the clay–water–electrolyte admixtures relations. Based on a comprehensive literature review, the effect of nanomaterials, biopolymers, and geopolymers on the behavior of compacted clays was investigated. It was found that all of these admixtures facilitate the development of an aggregated soil microstructure through unique mechanisms. Biopolymers have the highest water adsorption capacity followed by geopolymers and then by nanomaterials. The effect of admixtures on optimum compaction properties follows a decreasing trend similar to untreated clays (S = 80% ± 20%). The variation of hydraulic conductivity, compression index, and compressive strength are largely within the family of curves identified by typical relationships for compacted clays. These preliminary findings indicate that not all engineering properties are improved to the same level by the different types of physicochemical admixtures. The specific nature of geotechnical engineering (soil type and site conditions) as well as the wide range of admixture types and potential biodegradation of some of the reagents are the major shortcoming of using this class of materials.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"30 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Review of Physicochemical Stabilization for Improved Engineering Properties of Clays\",\"authors\":\"Ahmed Bukhary, S. Azam\",\"doi\":\"10.3390/geotechnics3030041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Severe climatic and environmental conditions warrant the use of stabilization agents in aid of compaction for sustainable improvement in engineering properties of clays. Physicochemical agents are a viable option because they are cost effective, environmentally friendly, and offer improved long-term performance of treated soils. This research developed a fundamental understanding of the clay–water–electrolyte admixtures relations. Based on a comprehensive literature review, the effect of nanomaterials, biopolymers, and geopolymers on the behavior of compacted clays was investigated. It was found that all of these admixtures facilitate the development of an aggregated soil microstructure through unique mechanisms. Biopolymers have the highest water adsorption capacity followed by geopolymers and then by nanomaterials. The effect of admixtures on optimum compaction properties follows a decreasing trend similar to untreated clays (S = 80% ± 20%). The variation of hydraulic conductivity, compression index, and compressive strength are largely within the family of curves identified by typical relationships for compacted clays. These preliminary findings indicate that not all engineering properties are improved to the same level by the different types of physicochemical admixtures. The specific nature of geotechnical engineering (soil type and site conditions) as well as the wide range of admixture types and potential biodegradation of some of the reagents are the major shortcoming of using this class of materials.\",\"PeriodicalId\":11823,\"journal\":{\"name\":\"Environmental geotechnics\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/geotechnics3030041\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3030041","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
A Review of Physicochemical Stabilization for Improved Engineering Properties of Clays
Severe climatic and environmental conditions warrant the use of stabilization agents in aid of compaction for sustainable improvement in engineering properties of clays. Physicochemical agents are a viable option because they are cost effective, environmentally friendly, and offer improved long-term performance of treated soils. This research developed a fundamental understanding of the clay–water–electrolyte admixtures relations. Based on a comprehensive literature review, the effect of nanomaterials, biopolymers, and geopolymers on the behavior of compacted clays was investigated. It was found that all of these admixtures facilitate the development of an aggregated soil microstructure through unique mechanisms. Biopolymers have the highest water adsorption capacity followed by geopolymers and then by nanomaterials. The effect of admixtures on optimum compaction properties follows a decreasing trend similar to untreated clays (S = 80% ± 20%). The variation of hydraulic conductivity, compression index, and compressive strength are largely within the family of curves identified by typical relationships for compacted clays. These preliminary findings indicate that not all engineering properties are improved to the same level by the different types of physicochemical admixtures. The specific nature of geotechnical engineering (soil type and site conditions) as well as the wide range of admixture types and potential biodegradation of some of the reagents are the major shortcoming of using this class of materials.
期刊介绍:
In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground.
Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering.
The journal''s Editor in Chief is a Member of the Committee on Publication Ethics.
All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories:
geochemistry and geohydrology,
soil and rock physics, biological processes in soil, soil-atmosphere interaction,
electrical, electromagnetic and thermal characteristics of porous media,
waste management, utilization of wastes, multiphase science, landslide wasting,
soil and water conservation,
sensor development and applications,
the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques,
uncertainty, reliability and risk, monitoring and forensic geotechnics.