预变形Cp-Ti阳极氧化制备TiO2纳米结构的光催化活性增强

M. Altay, Murat Çağlar Baydoğan
{"title":"预变形Cp-Ti阳极氧化制备TiO2纳米结构的光催化活性增强","authors":"M. Altay, Murat Çağlar Baydoğan","doi":"10.1080/00202967.2022.2154938","DOIUrl":null,"url":null,"abstract":"ABSTRACT Arrays of TiO2 nanotubes were prepared on pre-deformed commercially pure titanium (Cp–Ti) foils by anodic oxidation in 1 vol.-% HF-based electrolyte. Prior to the anodic oxidation, the samples were deformed by uniaxial tension and cold rolling at room temperature in three different strain levels. Following the anodic oxidation, the samples were annealed at 450°C to obtain crystalline anatase structure. Effects of the deformation on the produced nano structures were investigated by characterisation studies and photocatalytic activity tests including methylene blue degradation test, photoluminescence, and UV–Vis diffuse reflectance spectra analyses. The results showed that the induced strain has a remarkable effect on the nanotube morphology. It also led to a decrease in the crystallite size in the uniaxial tensioned and cold rolled titanium foils. As a result of the morphological and structural changes, the photocatalytic activity of the samples increased with cold rolling strain, and uniaxial tension strains up to a critical level.","PeriodicalId":23251,"journal":{"name":"Transactions of the IMF","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced photocatalytic activity of TiO2 nanostructures produced by anodic oxidation of pre-deformed Cp–Ti\",\"authors\":\"M. Altay, Murat Çağlar Baydoğan\",\"doi\":\"10.1080/00202967.2022.2154938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Arrays of TiO2 nanotubes were prepared on pre-deformed commercially pure titanium (Cp–Ti) foils by anodic oxidation in 1 vol.-% HF-based electrolyte. Prior to the anodic oxidation, the samples were deformed by uniaxial tension and cold rolling at room temperature in three different strain levels. Following the anodic oxidation, the samples were annealed at 450°C to obtain crystalline anatase structure. Effects of the deformation on the produced nano structures were investigated by characterisation studies and photocatalytic activity tests including methylene blue degradation test, photoluminescence, and UV–Vis diffuse reflectance spectra analyses. The results showed that the induced strain has a remarkable effect on the nanotube morphology. It also led to a decrease in the crystallite size in the uniaxial tensioned and cold rolled titanium foils. As a result of the morphological and structural changes, the photocatalytic activity of the samples increased with cold rolling strain, and uniaxial tension strains up to a critical level.\",\"PeriodicalId\":23251,\"journal\":{\"name\":\"Transactions of the IMF\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the IMF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00202967.2022.2154938\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the IMF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00202967.2022.2154938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用1 vol阳极氧化法在预变形的商业纯钛(Cp-Ti)箔上制备了TiO2纳米管阵列。-% hf基电解质。在阳极氧化之前,试样在室温下进行了三种不同应变水平的单轴拉伸和冷轧变形。阳极氧化后,在450℃下退火,得到结晶锐钛矿结构。通过表征研究和光催化活性测试,包括亚甲基蓝降解测试、光致发光和紫外-可见漫反射光谱分析,研究了变形对所制备纳米结构的影响。结果表明,诱导菌株对纳米管的形貌有显著影响。它还导致了单轴拉伸和冷轧钛箔中晶粒尺寸的减小。由于形貌和结构的变化,样品的光催化活性随着冷轧应变和单轴拉伸应变的增加而增加,达到临界水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced photocatalytic activity of TiO2 nanostructures produced by anodic oxidation of pre-deformed Cp–Ti
ABSTRACT Arrays of TiO2 nanotubes were prepared on pre-deformed commercially pure titanium (Cp–Ti) foils by anodic oxidation in 1 vol.-% HF-based electrolyte. Prior to the anodic oxidation, the samples were deformed by uniaxial tension and cold rolling at room temperature in three different strain levels. Following the anodic oxidation, the samples were annealed at 450°C to obtain crystalline anatase structure. Effects of the deformation on the produced nano structures were investigated by characterisation studies and photocatalytic activity tests including methylene blue degradation test, photoluminescence, and UV–Vis diffuse reflectance spectra analyses. The results showed that the induced strain has a remarkable effect on the nanotube morphology. It also led to a decrease in the crystallite size in the uniaxial tensioned and cold rolled titanium foils. As a result of the morphological and structural changes, the photocatalytic activity of the samples increased with cold rolling strain, and uniaxial tension strains up to a critical level.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Typical metal implant materials and the application of laser cladding in their surface modification Production of superhydrophobic surfaces on hydrophilic AA 6063 aluminium alloy and optimisation using a Taguchi design approach Dr Lars Pleth Nielsen A study on the repeatability of electroformed electrochemical gas driven micro-pump, using the surface roughness of cathode electrodes Determination of antibacterial performance of boric acid ester in the paint industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1