基于电子束线3D打印技术的钛基材料增材制造:特点、优势与展望

IF 1.5 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Uspekhi Fiziki Metallov-Progress in Physics of Metals Pub Date : 2023-03-01 DOI:10.15407/ufm.24.01.075
{"title":"基于电子束线3D打印技术的钛基材料增材制造:特点、优势与展望","authors":"","doi":"10.15407/ufm.24.01.075","DOIUrl":null,"url":null,"abstract":"Potential of additive manufacturing technologies, namely, xBeam 3D Metal Printing for the fabrication of uniform Ti–6Al–4V (Ti-6-4, mas.%) material as well as layered titanium-based structures, with mechanical properties sufficient for wide practical application is demonstrated. The key distinctive features of this process are titanium alloy wire as a feedstock material and hollow conical electron beam for heating and melting of the wire. 3D printed with special ‘shift strategy’ Ti-6-4 alloy meets requirements to mechanical characteristics of corresponding conventional cast and wrought products, if microstructure features, material anisotropy and crystallographic texture are controlled with proper selection of processing parameters. Production of multilayered materials consisting of combined layers of different titanium materials, viz. commercially pure titanium (CP-Ti), Ti-6-4 and high-strength T110 alloys, as well as metal matrix composites (MMC) based on Ti-6-4 matrix reinforced by fine TiC particles is considered. Microstructural features and mechanical properties of all 3D printed materials are investigated. Terminal ballistic tests are performed with different ammunition. Described results show the promising potential of 3D printing technologies, xBeam 3D Metal Printing as an example, for manufacturing of titanium-based multilayered armour materials with reduced thickness and weight, and at the same time, sufficient protection characteristics.","PeriodicalId":41786,"journal":{"name":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Additive Manufacturing of Titanium-Based Materials Using Electron Beam Wire 3D Printing Approach: Peculiarities, Advantages, and Prospects\",\"authors\":\"\",\"doi\":\"10.15407/ufm.24.01.075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potential of additive manufacturing technologies, namely, xBeam 3D Metal Printing for the fabrication of uniform Ti–6Al–4V (Ti-6-4, mas.%) material as well as layered titanium-based structures, with mechanical properties sufficient for wide practical application is demonstrated. The key distinctive features of this process are titanium alloy wire as a feedstock material and hollow conical electron beam for heating and melting of the wire. 3D printed with special ‘shift strategy’ Ti-6-4 alloy meets requirements to mechanical characteristics of corresponding conventional cast and wrought products, if microstructure features, material anisotropy and crystallographic texture are controlled with proper selection of processing parameters. Production of multilayered materials consisting of combined layers of different titanium materials, viz. commercially pure titanium (CP-Ti), Ti-6-4 and high-strength T110 alloys, as well as metal matrix composites (MMC) based on Ti-6-4 matrix reinforced by fine TiC particles is considered. Microstructural features and mechanical properties of all 3D printed materials are investigated. Terminal ballistic tests are performed with different ammunition. Described results show the promising potential of 3D printing technologies, xBeam 3D Metal Printing as an example, for manufacturing of titanium-based multilayered armour materials with reduced thickness and weight, and at the same time, sufficient protection characteristics.\",\"PeriodicalId\":41786,\"journal\":{\"name\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Uspekhi Fiziki Metallov-Progress in Physics of Metals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/ufm.24.01.075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Uspekhi Fiziki Metallov-Progress in Physics of Metals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/ufm.24.01.075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

增材制造技术的潜力,即xBeam 3D金属打印,用于制造均匀Ti-6Al-4V (Ti-6-4,质量%)材料以及层状钛基结构,具有足够广泛实际应用的机械性能。该工艺的主要特点是钛合金丝作为原料,空心锥形电子束加热和熔化钛合金丝。采用特殊的“移位策略”3D打印Ti-6-4合金,在合理选择工艺参数控制微观组织特征、材料各向异性和晶体织构的前提下,满足相应常规铸锻制品的力学特性要求。考虑生产由不同钛材料组合层组成的多层材料,即商业纯钛(CP-Ti), Ti-6-4和高强度T110合金,以及基于Ti-6-4基体的金属基复合材料(MMC)。研究了所有3D打印材料的微观结构特征和力学性能。用不同的弹药进行末端弹道试验。所描述的结果显示了3D打印技术的巨大潜力,以xBeam 3D金属打印为例,可以制造出厚度和重量较轻的钛基多层装甲材料,同时具有足够的防护特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Additive Manufacturing of Titanium-Based Materials Using Electron Beam Wire 3D Printing Approach: Peculiarities, Advantages, and Prospects
Potential of additive manufacturing technologies, namely, xBeam 3D Metal Printing for the fabrication of uniform Ti–6Al–4V (Ti-6-4, mas.%) material as well as layered titanium-based structures, with mechanical properties sufficient for wide practical application is demonstrated. The key distinctive features of this process are titanium alloy wire as a feedstock material and hollow conical electron beam for heating and melting of the wire. 3D printed with special ‘shift strategy’ Ti-6-4 alloy meets requirements to mechanical characteristics of corresponding conventional cast and wrought products, if microstructure features, material anisotropy and crystallographic texture are controlled with proper selection of processing parameters. Production of multilayered materials consisting of combined layers of different titanium materials, viz. commercially pure titanium (CP-Ti), Ti-6-4 and high-strength T110 alloys, as well as metal matrix composites (MMC) based on Ti-6-4 matrix reinforced by fine TiC particles is considered. Microstructural features and mechanical properties of all 3D printed materials are investigated. Terminal ballistic tests are performed with different ammunition. Described results show the promising potential of 3D printing technologies, xBeam 3D Metal Printing as an example, for manufacturing of titanium-based multilayered armour materials with reduced thickness and weight, and at the same time, sufficient protection characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
18.80%
发文量
21
审稿时长
13 weeks
期刊介绍: The review journal Uspehi Fiziki Metallov (abbreviated key-title: Usp. Fiz. Met.) was founded in 2000. In 2018, the journal officially obtained parallel title Progress in Physics of Metals (abbreviated title — Prog. Phys. Met.). The journal publishes articles (that has not been published nowhere earlier and are not being considered for publication elsewhere) comprising reviews of experimental and theoretical results in physics and technology of metals, alloys, compounds, and materials that possess metallic properties; reviews on monographs, information about conferences, seminars; data on the history of metal physics; advertising of new technologies, materials and devices. Scope of the Journal: Electronic Structure, Electrical, Magnetic and Optical Properties; Interactions of Radiation and Particles with Solids and Liquids; Structure and Properties of Amorphous Solids and Liquids; Defects and Dynamics of Crystal Structure; Mechanical, Thermal and Kinetic Properties; Phase Equilibria and Transformations; Interphase Boundaries, Metal Surfaces and Films; Structure and Properties of Nanoscale and Mesoscopic Materials; Treatment of Metallic Materials and Its Effects on Microstructure and Properties.
期刊最新文献
Modern Fillers of Metal and Polymer Matrices Influence of Modification on the Characteristics of Reinforcing Steels Intended for Reinforced Concrete Structures On the Solubility of Hydrogen in Metals and Alloys Methods of Improving the Structure and Properties of High-Speed Steels Basics of Additive Manufacturing Processes for High-Entropy Alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1