掺钇Fe-Cr-Al电热合金的晶粒生长及抗氧化性能

IF 0.6 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY Annales De Chimie-science Des Materiaux Pub Date : 2020-03-15 DOI:10.18280/acsm.440104
Zhaoyu Wu, Guang Wen, Yong Han
{"title":"掺钇Fe-Cr-Al电热合金的晶粒生长及抗氧化性能","authors":"Zhaoyu Wu, Guang Wen, Yong Han","doi":"10.18280/acsm.440104","DOIUrl":null,"url":null,"abstract":"Received: 9 September 2019 Accepted: 17 December 2019 This paper mainly explores how the addition of yttrium (Y) affects the grain growth and oxidation resistance of Fe-Cr-Al electrothermal alloy under high temperatures. Firstly, five groups of Y-free samples of Fe-Cr-Al electrothermal alloy were prepared through hot forging, hot rolling and cold rolling, and each group was doped with different amounts of Y and treated at several temperature levels. The element distribution and cross-sectional morphology of the oxide film were obtained by scanning electron microscopy (SEM). The evolution of the oxide film was monitored in backscattering Raman configuration. According to the surface and cross-sectional morphologies and Xray diffraction (XRD) spectra, it is concluded that the addition of Y can refine the grain size, inhibit the grain growth and improve the oxidation resistance of Fe-Cr-Al alloy under high temperature, creating a continuous dense layer of oxide film on the matrix; the density and continuity of the film can be improved by adding a trace amount of Y (0.1wt.%). In this case, the film will adhere to the matrix more tightly, reducing the oxidation rate. However, a high Y dose (0.4wt.%) will thicken the oxide film and reduce the oxidation resistance of the alloy. The optimal dose of Y is 0.1wt.% for the Fe-Cr-Al alloy. The research results provide a reference for improving the performance of Fe-CrAl alloy with rare earth (RE) elements.","PeriodicalId":7897,"journal":{"name":"Annales De Chimie-science Des Materiaux","volume":"47 1","pages":"29-36"},"PeriodicalIF":0.6000,"publicationDate":"2020-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Grain Growth and Oxidation Resistance of Fe-Cr-Al Electrothermal Alloy Doped with Yttrium\",\"authors\":\"Zhaoyu Wu, Guang Wen, Yong Han\",\"doi\":\"10.18280/acsm.440104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Received: 9 September 2019 Accepted: 17 December 2019 This paper mainly explores how the addition of yttrium (Y) affects the grain growth and oxidation resistance of Fe-Cr-Al electrothermal alloy under high temperatures. Firstly, five groups of Y-free samples of Fe-Cr-Al electrothermal alloy were prepared through hot forging, hot rolling and cold rolling, and each group was doped with different amounts of Y and treated at several temperature levels. The element distribution and cross-sectional morphology of the oxide film were obtained by scanning electron microscopy (SEM). The evolution of the oxide film was monitored in backscattering Raman configuration. According to the surface and cross-sectional morphologies and Xray diffraction (XRD) spectra, it is concluded that the addition of Y can refine the grain size, inhibit the grain growth and improve the oxidation resistance of Fe-Cr-Al alloy under high temperature, creating a continuous dense layer of oxide film on the matrix; the density and continuity of the film can be improved by adding a trace amount of Y (0.1wt.%). In this case, the film will adhere to the matrix more tightly, reducing the oxidation rate. However, a high Y dose (0.4wt.%) will thicken the oxide film and reduce the oxidation resistance of the alloy. The optimal dose of Y is 0.1wt.% for the Fe-Cr-Al alloy. The research results provide a reference for improving the performance of Fe-CrAl alloy with rare earth (RE) elements.\",\"PeriodicalId\":7897,\"journal\":{\"name\":\"Annales De Chimie-science Des Materiaux\",\"volume\":\"47 1\",\"pages\":\"29-36\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2020-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De Chimie-science Des Materiaux\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/acsm.440104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De Chimie-science Des Materiaux","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/acsm.440104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文主要探讨了Fe-Cr-Al电热合金中添加钇(Y)对高温下晶粒生长和抗氧化性能的影响。首先,通过热锻、热轧和冷轧制备五组Fe-Cr-Al电热合金无Y试样,每组分别掺杂不同量的Y并进行不同温度水平的处理。利用扫描电镜(SEM)分析了氧化膜的元素分布和横截面形貌。在后向散射拉曼结构中监测氧化膜的演变。根据Fe-Cr-Al合金的表面形貌和横截面形貌以及x射线衍射(XRD)谱图可知,Y的加入可以细化Fe-Cr-Al合金的晶粒尺寸,抑制晶粒生长,提高其高温抗氧化性,在基体上形成连续致密的氧化膜层;加入微量的Y (0.1wt.%)可以改善薄膜的密度和连续性。在这种情况下,薄膜将更紧密地附着在基体上,从而降低氧化速率。然而,高剂量的Y (0.4wt.%)会使氧化膜变厚,降低合金的抗氧化性。Y的最佳剂量为0.1wt。% Fe-Cr-Al合金。研究结果为提高稀土元素Fe-CrAl合金的性能提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grain Growth and Oxidation Resistance of Fe-Cr-Al Electrothermal Alloy Doped with Yttrium
Received: 9 September 2019 Accepted: 17 December 2019 This paper mainly explores how the addition of yttrium (Y) affects the grain growth and oxidation resistance of Fe-Cr-Al electrothermal alloy under high temperatures. Firstly, five groups of Y-free samples of Fe-Cr-Al electrothermal alloy were prepared through hot forging, hot rolling and cold rolling, and each group was doped with different amounts of Y and treated at several temperature levels. The element distribution and cross-sectional morphology of the oxide film were obtained by scanning electron microscopy (SEM). The evolution of the oxide film was monitored in backscattering Raman configuration. According to the surface and cross-sectional morphologies and Xray diffraction (XRD) spectra, it is concluded that the addition of Y can refine the grain size, inhibit the grain growth and improve the oxidation resistance of Fe-Cr-Al alloy under high temperature, creating a continuous dense layer of oxide film on the matrix; the density and continuity of the film can be improved by adding a trace amount of Y (0.1wt.%). In this case, the film will adhere to the matrix more tightly, reducing the oxidation rate. However, a high Y dose (0.4wt.%) will thicken the oxide film and reduce the oxidation resistance of the alloy. The optimal dose of Y is 0.1wt.% for the Fe-Cr-Al alloy. The research results provide a reference for improving the performance of Fe-CrAl alloy with rare earth (RE) elements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales De Chimie-science Des Materiaux
Annales De Chimie-science Des Materiaux 工程技术-材料科学:综合
CiteScore
1.70
自引率
25.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: The ACSM is concerning the cutting-edge innovations in solid material science. The journal covers a broad spectrum of scientific fields, ranging all the way from metallurgy, semiconductors, solid mineral compounds, organic macromolecular compounds to composite materials. The editorial board encourages the submission of original papers that deal with all aspects of material science, including but not limited to synthesis and processing, property characterization, reactivity and reaction kinetics, evolution in service, and recycling. The papers should provide new insights into solid materials and make a significant original contribution to knowledge.
期刊最新文献
Mechanical and Thermal Characteristics of Concrete Reinforced with Crushed Glass and Glass Fiber: An Experimental Study Structural Performance of Reinforced Concrete Columns with Bracing Reinforcement Elevated Temperature Effects on Geo-Polymer Concrete: An Experimental and Numerical-Review Study Investigating the Mechanical and Thermal Properties of Concrete with Recycled Nanoplastics for Enhanced Sustainability Experimental Investigation on Using Electrical Cable Waste as Fine Aggregate and Reinforcing Fiber in Sustainable Mortar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1