电力系统优化问题的综合计算智能方法

A. Afandi, I. Fadlika, L. Gumilar, Y. Rahmawati, Quota Alief Sias, I. Wahyono, Yunis Sulistyorini, F. Wa, Michiko Ryuu Sakura A
{"title":"电力系统优化问题的综合计算智能方法","authors":"A. Afandi, I. Fadlika, L. Gumilar, Y. Rahmawati, Quota Alief Sias, I. Wahyono, Yunis Sulistyorini, F. Wa, Michiko Ryuu Sakura A","doi":"10.11591/EECSI.V5.1703","DOIUrl":null,"url":null,"abstract":"This paper presents an adoption of a natural phenomenon as Thunderstorm Algorithm (TA) which is applied to solve a problem of the power production composition under various constraints. This work also introduces artificial salmon tracking algorithm (ASTA) for defining the optimal strategy of the power system on the power consumption. Both algorithms are tested on the IEEE-62 bus system as a selected structure for the mathematical cased model. By considering all parameters, results show that ASTA can be applied to predict the power consumption and TA also has good performances while searching the optimal solution. Moreover, the power production can be presented throughout an economic dispatch problem. Technically, this computation demonstrates the optimal solution with fast convergence and short time consumption. These processes also perform smooth and stable characteristics for the searching completion.","PeriodicalId":20498,"journal":{"name":"Proceeding of the Electrical Engineering Computer Science and Informatics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined Computational Intelligence Approach for the Power System Optimization Problem\",\"authors\":\"A. Afandi, I. Fadlika, L. Gumilar, Y. Rahmawati, Quota Alief Sias, I. Wahyono, Yunis Sulistyorini, F. Wa, Michiko Ryuu Sakura A\",\"doi\":\"10.11591/EECSI.V5.1703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an adoption of a natural phenomenon as Thunderstorm Algorithm (TA) which is applied to solve a problem of the power production composition under various constraints. This work also introduces artificial salmon tracking algorithm (ASTA) for defining the optimal strategy of the power system on the power consumption. Both algorithms are tested on the IEEE-62 bus system as a selected structure for the mathematical cased model. By considering all parameters, results show that ASTA can be applied to predict the power consumption and TA also has good performances while searching the optimal solution. Moreover, the power production can be presented throughout an economic dispatch problem. Technically, this computation demonstrates the optimal solution with fast convergence and short time consumption. These processes also perform smooth and stable characteristics for the searching completion.\",\"PeriodicalId\":20498,\"journal\":{\"name\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceeding of the Electrical Engineering Computer Science and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/EECSI.V5.1703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of the Electrical Engineering Computer Science and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/EECSI.V5.1703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用雷暴算法(TA)这一自然现象来求解各种约束条件下的发电组合问题。本文还介绍了人工鲑鱼跟踪算法(ASTA),用于确定电力系统在电力消耗上的最优策略。这两种算法都在IEEE-62总线系统上进行了测试,作为数学case模型的选择结构。综合考虑各参数,结果表明,ASTA可以用于预测功耗,并且在寻找最优解时具有良好的性能。此外,电力生产可以通过一个经济调度问题来呈现。从技术上讲,该计算具有收敛快、耗时短的最优解。这些过程还具有平滑和稳定的特征,使搜索完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combined Computational Intelligence Approach for the Power System Optimization Problem
This paper presents an adoption of a natural phenomenon as Thunderstorm Algorithm (TA) which is applied to solve a problem of the power production composition under various constraints. This work also introduces artificial salmon tracking algorithm (ASTA) for defining the optimal strategy of the power system on the power consumption. Both algorithms are tested on the IEEE-62 bus system as a selected structure for the mathematical cased model. By considering all parameters, results show that ASTA can be applied to predict the power consumption and TA also has good performances while searching the optimal solution. Moreover, the power production can be presented throughout an economic dispatch problem. Technically, this computation demonstrates the optimal solution with fast convergence and short time consumption. These processes also perform smooth and stable characteristics for the searching completion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimated Profits of Rengginang Lorjuk Madura by Used Comparison of Holt-Winter and Moving Average Water Contents and Monoglycerides as Development Role of Biodiesel Standard in Indonesia for B30 Implementation Image Restoration Effect on DCT High Frequency Removal and Wiener Algorithm for Detecting Facial Key Points RAIKU: E-Commerce App Using Laravel Probabilistic Programming with Piecewise Objective Function for Solving Supplier Selection Problem with Price Discount and Probabilistic Demand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1