高表面积SiO2负载聚酰亚胺碳气凝胶微球的制备:电化学应用

IF 2.9 4区 物理与天体物理 Q2 OPTICS Journal of Nonlinear Optical Physics & Materials Pub Date : 2022-12-09 DOI:10.1088/2515-7639/acaa59
Shin-Chih Liu, Jianqi Ji, Yixing Wang, Cenqi Yan, Huitao Bai, Jiaqiang Qin, Pei Cheng
{"title":"高表面积SiO2负载聚酰亚胺碳气凝胶微球的制备:电化学应用","authors":"Shin-Chih Liu, Jianqi Ji, Yixing Wang, Cenqi Yan, Huitao Bai, Jiaqiang Qin, Pei Cheng","doi":"10.1088/2515-7639/acaa59","DOIUrl":null,"url":null,"abstract":"A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.","PeriodicalId":16520,"journal":{"name":"Journal of Nonlinear Optical Physics & Materials","volume":"20 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application\",\"authors\":\"Shin-Chih Liu, Jianqi Ji, Yixing Wang, Cenqi Yan, Huitao Bai, Jiaqiang Qin, Pei Cheng\",\"doi\":\"10.1088/2515-7639/acaa59\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.\",\"PeriodicalId\":16520,\"journal\":{\"name\":\"Journal of Nonlinear Optical Physics & Materials\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nonlinear Optical Physics & Materials\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2515-7639/acaa59\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Optical Physics & Materials","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2515-7639/acaa59","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

以聚酰胺酸盐和水解正硅酸四乙酯为原料,采用反相乳化法制备了一系列聚酰亚胺/二氧化硅气凝胶微球。然后对PI/SiO2气凝胶微球进行碳化和蚀刻,得到碳气凝胶微球(CAMs)。采用扫描电镜、透射电镜和氮气等温吸附对微球的微观形貌和孔隙结构进行表征;电化学工作站对cam的电化学性能进行了测试。结果表明:通过调整SiO2的含量,可以得到具有不同孔结构和比表面积的cam;SiO2含量为50%时,其最大比表面积为1166.9 m2 g−1,总孔容为1.2369 cm3 g−1。当用作超级电容器的电极材料时,这些cam在三电极系统中的最大比电容为125.1 F g−1,在30 a g−1时的最大比电容为53.3%。本文提出了一种利用线性PI前驱体和SiO2支撑骨架制备高比表面积cam的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fabrication of high-surface-area, SiO2 supported polyimide carbon aerogel microspheres: electrochemical application
A series of polyimide (PI)/SiO2 aerogel microspheres were prepared by using polyamide acid salt and hydrolyzed tetraethyl orthosilicate based on the reverse-phase emulsion method. Then, PI/SiO2 aerogel microspheres were carbonized and etched to obtain carbon aerogel microspheres (CAMs). Scanning electron microscope, transmission electron microscope and nitrogen isothermal adsorption were used to characterize the micro-morphology and pore structure of the microspheres; and electrochemical workstation was used to test the electrochemical performance of the CAMs. The results showed that CAMs with different pore structures and specific surface area were obtained by adjusting the content of SiO2. Highest specific surface area of 1166.9 m2 g−1 and a total pore volume of 1.2369 cm3 g−1 were achieved at a SiO2 content of 50%. When used as the electrode materials for supercapacitors, these CAMs demonstrated a maximum specific capacitance of 125.1 F g−1 in a three-electrode system and a maximum capacitance of 53.3% at 30 A g−1. This article provides a new strategy for the preparation of CAMs with high specific surface area by using linear PI precursor and SiO2 support skeleton.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
48.10%
发文量
53
审稿时长
3 months
期刊介绍: This journal is devoted to the rapidly advancing research and development in the field of nonlinear interactions of light with matter. Topics of interest include, but are not limited to, nonlinear optical materials, metamaterials and plasmonics, nano-photonic structures, stimulated scatterings, harmonic generations, wave mixing, real time holography, guided waves and solitons, bistabilities, instabilities and nonlinear dynamics, and their applications in laser and coherent lightwave amplification, guiding, switching, modulation, communication and information processing. Original papers, comprehensive reviews and rapid communications reporting original theories and observations are sought for in these and related areas. This journal will also publish proceedings of important international meetings and workshops. It is intended for graduate students, scientists and researchers in academic, industrial and government research institutions.
期刊最新文献
Dominance of polarization modes and absorption on self-focusing of laser beams in collisionless magnetized plasma Influence of the focusing parameter on the SHG efficiency at a wavelength of 968 nm in a ZnSe polycrystal Linear and nonlinear electric and magneto-optical absorption coefficients and relative refractive index changes in WxMo1-xS2 Monolayer: Role of Tungsten contents Optical properties of silver-doped ZnS nanostructures W-chirped solitons and modulated waves patterns in parabolic law medium with anti-cubic nonlinearity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1