关于从观测数据中学习的思考

Q2 Economics, Econometrics and Finance International Journal of Economics and Finance Studies Pub Date : 2022-09-18 DOI:10.5539/ijef.v14n10p56
Caleb Piche-Larocque, Joseph Findlay, Akhter Faroque
{"title":"关于从观测数据中学习的思考","authors":"Caleb Piche-Larocque, Joseph Findlay, Akhter Faroque","doi":"10.5539/ijef.v14n10p56","DOIUrl":null,"url":null,"abstract":"The social sciences study various aspects of human behaviour – social, economic and political – based on observational data. Observational data are inaccurate and subject to simultaneity, seasonality, structural breaks, random variation and too many interlocking variables masking the underlying causal patterns. During the past two decades or so, the use experimental data (RCTs) has become widely popular across the social sciences, creating a tension between the supporters and critics of the new and the old methodologies. In this paper, we first review these methodologies, both observational and experimental, focusing on how economists and other social scientists try to learn about the underlying causal relationships from the correlations contained in the data. We then reflect on whether the new or the old methodologies should be the way forward from a purely statistical and a broader policy and development perspectives.","PeriodicalId":37166,"journal":{"name":"International Journal of Economics and Finance Studies","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reflections on Learning from Observational Data\",\"authors\":\"Caleb Piche-Larocque, Joseph Findlay, Akhter Faroque\",\"doi\":\"10.5539/ijef.v14n10p56\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The social sciences study various aspects of human behaviour – social, economic and political – based on observational data. Observational data are inaccurate and subject to simultaneity, seasonality, structural breaks, random variation and too many interlocking variables masking the underlying causal patterns. During the past two decades or so, the use experimental data (RCTs) has become widely popular across the social sciences, creating a tension between the supporters and critics of the new and the old methodologies. In this paper, we first review these methodologies, both observational and experimental, focusing on how economists and other social scientists try to learn about the underlying causal relationships from the correlations contained in the data. We then reflect on whether the new or the old methodologies should be the way forward from a purely statistical and a broader policy and development perspectives.\",\"PeriodicalId\":37166,\"journal\":{\"name\":\"International Journal of Economics and Finance Studies\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Economics and Finance Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/ijef.v14n10p56\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Economics and Finance Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/ijef.v14n10p56","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

摘要

社会科学基于观测数据研究人类行为的各个方面——社会、经济和政治。观测数据是不准确的,并受到同时性、季节性、结构断裂、随机变化和太多连锁变量的影响,这些变量掩盖了潜在的因果模式。在过去二十年左右的时间里,使用实验数据(rct)在社会科学领域广泛流行,在新旧方法的支持者和批评者之间产生了紧张关系。在本文中,我们首先回顾了这些方法,包括观察和实验,重点关注经济学家和其他社会科学家如何试图从数据中包含的相关性中了解潜在的因果关系。然后,我们从纯粹的统计和更广泛的政策和发展的角度考虑新的或旧的方法是否应该是前进的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reflections on Learning from Observational Data
The social sciences study various aspects of human behaviour – social, economic and political – based on observational data. Observational data are inaccurate and subject to simultaneity, seasonality, structural breaks, random variation and too many interlocking variables masking the underlying causal patterns. During the past two decades or so, the use experimental data (RCTs) has become widely popular across the social sciences, creating a tension between the supporters and critics of the new and the old methodologies. In this paper, we first review these methodologies, both observational and experimental, focusing on how economists and other social scientists try to learn about the underlying causal relationships from the correlations contained in the data. We then reflect on whether the new or the old methodologies should be the way forward from a purely statistical and a broader policy and development perspectives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Economics and Finance Studies
International Journal of Economics and Finance Studies Economics, Econometrics and Finance-Economics, Econometrics and Finance (miscellaneous)
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
12 weeks
期刊最新文献
Payment Market and Pricing: A Bibliometric Review Why is Technological Innovation Locally Concentrated? A Theoretical Review Present Bias and Quality Reduction on Daily Deal Platforms Capital Structure and Macroeconomic Determinants in Emerging Country: A Panel Quantile Regression Approach Fiscal Pedal: Fraud or Creative Accounting? A Theoretical Understanding of the Dangerous Fiscal Cycles that Affected the Brazilian Economy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1