Y. P. Hastuti, Y. Fatma, Hardi Pitoyo, W. Nurussalam, Jajang Ruhyana
{"title":"印度尼西亚Pangkajene和Banyuwangi白对虾及其养殖环境细菌总多样性评价","authors":"Y. P. Hastuti, Y. Fatma, Hardi Pitoyo, W. Nurussalam, Jajang Ruhyana","doi":"10.35118/APJMBB.2021.029.3.04","DOIUrl":null,"url":null,"abstract":"Detection of bacterial diversity in whiteleg shrimps and its rearing water is a vital first step in monitoring aquaculture activities. Bacterial community imbalance in whiteleg shrimps and its rearing water influences the quality and quantity of shrimp production. Identifying the bacterial community provides basic information related to dominant bacterial groups in whiteleg shrimps and environments, providing recommendations for proper environmental monitoring and management. In this study, we investigated bacterial community structure in the rearing water and intestinal tract of whiteleg shrimp (Litopenaeus vannamei) collected from two sites, i.e., Pangkajene, South Sulawesi (SU) and Banyuwangi, East Java (BW), Indonesia. The bacterial community was analyzed using amplicon sequencing with Illumina sequencing platform based on the V3-V4 region of the 16S rRNA genes. Bacterial diversity and composition were found differed between the rearing water and the shrimps’ intestines. Bacterial diversity in the rearing water of Banyuwangi (W.BW) was higher than that of Pangkajene (W.SU). Proteobacteria, Bacteroidetes, and Firmicutes were found as the most dominant phyla in rearing water from both farms, while distinct bacterial composition was observed in the shrimps’ intestines. The shrimp intestine from Banyuwangi (U.BW) was dominated by Firmicutes (22.36%), Proteobacteria (22.33%), and Verrucomicrobia (21.11%). In contrast, the shrimp intestine from Pangkajene (U.SU) was highly dominated by Tenericutes (88.54%), followed by Proteobacteria (4.66%), and Firmicutes (2.27%). The difference in bacterial community structure between the rearing water and shrimps’ intestines suggested that the host intestinal environment might have greater selective pressure for bacterial composition inhabiting L.vannamei intestines. Our observations suggest that the shrimps cultured in the rearing water with the similar dominant bacterial group have specific intestinal bacterial diversity.","PeriodicalId":8566,"journal":{"name":"Asia-pacific Journal of Molecular Biology and Biotechnology","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Assessment of total bacterial diversity in whiteleg shrimps and its aquaculture environment in Pangkajene and Banyuwangi, Indonesia\",\"authors\":\"Y. P. Hastuti, Y. Fatma, Hardi Pitoyo, W. Nurussalam, Jajang Ruhyana\",\"doi\":\"10.35118/APJMBB.2021.029.3.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detection of bacterial diversity in whiteleg shrimps and its rearing water is a vital first step in monitoring aquaculture activities. Bacterial community imbalance in whiteleg shrimps and its rearing water influences the quality and quantity of shrimp production. Identifying the bacterial community provides basic information related to dominant bacterial groups in whiteleg shrimps and environments, providing recommendations for proper environmental monitoring and management. In this study, we investigated bacterial community structure in the rearing water and intestinal tract of whiteleg shrimp (Litopenaeus vannamei) collected from two sites, i.e., Pangkajene, South Sulawesi (SU) and Banyuwangi, East Java (BW), Indonesia. The bacterial community was analyzed using amplicon sequencing with Illumina sequencing platform based on the V3-V4 region of the 16S rRNA genes. Bacterial diversity and composition were found differed between the rearing water and the shrimps’ intestines. Bacterial diversity in the rearing water of Banyuwangi (W.BW) was higher than that of Pangkajene (W.SU). Proteobacteria, Bacteroidetes, and Firmicutes were found as the most dominant phyla in rearing water from both farms, while distinct bacterial composition was observed in the shrimps’ intestines. The shrimp intestine from Banyuwangi (U.BW) was dominated by Firmicutes (22.36%), Proteobacteria (22.33%), and Verrucomicrobia (21.11%). In contrast, the shrimp intestine from Pangkajene (U.SU) was highly dominated by Tenericutes (88.54%), followed by Proteobacteria (4.66%), and Firmicutes (2.27%). The difference in bacterial community structure between the rearing water and shrimps’ intestines suggested that the host intestinal environment might have greater selective pressure for bacterial composition inhabiting L.vannamei intestines. Our observations suggest that the shrimps cultured in the rearing water with the similar dominant bacterial group have specific intestinal bacterial diversity.\",\"PeriodicalId\":8566,\"journal\":{\"name\":\"Asia-pacific Journal of Molecular Biology and Biotechnology\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-pacific Journal of Molecular Biology and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35118/APJMBB.2021.029.3.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-pacific Journal of Molecular Biology and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35118/APJMBB.2021.029.3.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessment of total bacterial diversity in whiteleg shrimps and its aquaculture environment in Pangkajene and Banyuwangi, Indonesia
Detection of bacterial diversity in whiteleg shrimps and its rearing water is a vital first step in monitoring aquaculture activities. Bacterial community imbalance in whiteleg shrimps and its rearing water influences the quality and quantity of shrimp production. Identifying the bacterial community provides basic information related to dominant bacterial groups in whiteleg shrimps and environments, providing recommendations for proper environmental monitoring and management. In this study, we investigated bacterial community structure in the rearing water and intestinal tract of whiteleg shrimp (Litopenaeus vannamei) collected from two sites, i.e., Pangkajene, South Sulawesi (SU) and Banyuwangi, East Java (BW), Indonesia. The bacterial community was analyzed using amplicon sequencing with Illumina sequencing platform based on the V3-V4 region of the 16S rRNA genes. Bacterial diversity and composition were found differed between the rearing water and the shrimps’ intestines. Bacterial diversity in the rearing water of Banyuwangi (W.BW) was higher than that of Pangkajene (W.SU). Proteobacteria, Bacteroidetes, and Firmicutes were found as the most dominant phyla in rearing water from both farms, while distinct bacterial composition was observed in the shrimps’ intestines. The shrimp intestine from Banyuwangi (U.BW) was dominated by Firmicutes (22.36%), Proteobacteria (22.33%), and Verrucomicrobia (21.11%). In contrast, the shrimp intestine from Pangkajene (U.SU) was highly dominated by Tenericutes (88.54%), followed by Proteobacteria (4.66%), and Firmicutes (2.27%). The difference in bacterial community structure between the rearing water and shrimps’ intestines suggested that the host intestinal environment might have greater selective pressure for bacterial composition inhabiting L.vannamei intestines. Our observations suggest that the shrimps cultured in the rearing water with the similar dominant bacterial group have specific intestinal bacterial diversity.