{"title":"基于知识图高阶传播的学者推荐","authors":"Pu Li, Tianci Li, Xin Wang, Suzhi Zhang, Yuncheng Jiang, Yong Tang","doi":"10.4018/ijswis.297146","DOIUrl":null,"url":null,"abstract":"In a big data environment, traditional recommendation methods have limitations such as data sparseness and cold start, etc. In view of the rich semantics, excellent quality, and good structure of knowledge graphs, many researchers have introduced knowledge graphs into the research about recommendation systems, and studied interpretable recommendations based on knowledge graphs. Along this line, this paper proposes a scholar recommendation method based on the high-order propagation of knowledge graph (HoPKG), which analyzes the high-order semantic information in the knowledge graph, and generates richer entity representations to obtain users’ potential interest by distinguishing the importance of different entities. On this basis, a dual aggregation method of high-order propagation is proposed to enable entity information to be propagated more effectively. Through experimental analysis, compared with some baselines, such as Ripplenet, RKGE and CKE, our method has certain advantages in the evaluation indicators AUC and F1.","PeriodicalId":54934,"journal":{"name":"International Journal on Semantic Web and Information Systems","volume":"51 1","pages":"1-19"},"PeriodicalIF":4.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Scholar Recommendation Based on High-Order Propagation of Knowledge Graphs\",\"authors\":\"Pu Li, Tianci Li, Xin Wang, Suzhi Zhang, Yuncheng Jiang, Yong Tang\",\"doi\":\"10.4018/ijswis.297146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a big data environment, traditional recommendation methods have limitations such as data sparseness and cold start, etc. In view of the rich semantics, excellent quality, and good structure of knowledge graphs, many researchers have introduced knowledge graphs into the research about recommendation systems, and studied interpretable recommendations based on knowledge graphs. Along this line, this paper proposes a scholar recommendation method based on the high-order propagation of knowledge graph (HoPKG), which analyzes the high-order semantic information in the knowledge graph, and generates richer entity representations to obtain users’ potential interest by distinguishing the importance of different entities. On this basis, a dual aggregation method of high-order propagation is proposed to enable entity information to be propagated more effectively. Through experimental analysis, compared with some baselines, such as Ripplenet, RKGE and CKE, our method has certain advantages in the evaluation indicators AUC and F1.\",\"PeriodicalId\":54934,\"journal\":{\"name\":\"International Journal on Semantic Web and Information Systems\",\"volume\":\"51 1\",\"pages\":\"1-19\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal on Semantic Web and Information Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.4018/ijswis.297146\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal on Semantic Web and Information Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.4018/ijswis.297146","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Scholar Recommendation Based on High-Order Propagation of Knowledge Graphs
In a big data environment, traditional recommendation methods have limitations such as data sparseness and cold start, etc. In view of the rich semantics, excellent quality, and good structure of knowledge graphs, many researchers have introduced knowledge graphs into the research about recommendation systems, and studied interpretable recommendations based on knowledge graphs. Along this line, this paper proposes a scholar recommendation method based on the high-order propagation of knowledge graph (HoPKG), which analyzes the high-order semantic information in the knowledge graph, and generates richer entity representations to obtain users’ potential interest by distinguishing the importance of different entities. On this basis, a dual aggregation method of high-order propagation is proposed to enable entity information to be propagated more effectively. Through experimental analysis, compared with some baselines, such as Ripplenet, RKGE and CKE, our method has certain advantages in the evaluation indicators AUC and F1.
期刊介绍:
The International Journal on Semantic Web and Information Systems (IJSWIS) promotes a knowledge transfer channel where academics, practitioners, and researchers can discuss, analyze, criticize, synthesize, communicate, elaborate, and simplify the more-than-promising technology of the semantic Web in the context of information systems. The journal aims to establish value-adding knowledge transfer and personal development channels in three distinctive areas: academia, industry, and government.