{"title":"用圆柱形栅极全硅- nw场效应管表示温度纳米传感器","authors":"Seyed Ali Sedigh Ziabari","doi":"10.7508/IJND.2015.04.006","DOIUrl":null,"url":null,"abstract":"In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperature nano-sensor circuit. Then the solutions of increasing current temperature sensitivity are discussed by investigating the effects of the oxide thickness and the channel diameter on this parameter. Secondly, in this study, we demonstrate the temperature dependence of the transconductance (gm) and output resistance (ro) of the GAA-Si-NWFET. We have proposed the amplifier circuit as a temperature sensor based on the temperature dependence of these parameters. In addition, we have changed the channel diameter and the oxide thickness to increase the temperature sensitivity of gm and subsequently, temperature sensitivity of proposed sensor. Ultimately, the effects of channel diameter and oxide thickness on the temperature sensitivity of gm will be analytically investigated.","PeriodicalId":14081,"journal":{"name":"international journal of nano dimension","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2015-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET\",\"authors\":\"Seyed Ali Sedigh Ziabari\",\"doi\":\"10.7508/IJND.2015.04.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperature nano-sensor circuit. Then the solutions of increasing current temperature sensitivity are discussed by investigating the effects of the oxide thickness and the channel diameter on this parameter. Secondly, in this study, we demonstrate the temperature dependence of the transconductance (gm) and output resistance (ro) of the GAA-Si-NWFET. We have proposed the amplifier circuit as a temperature sensor based on the temperature dependence of these parameters. In addition, we have changed the channel diameter and the oxide thickness to increase the temperature sensitivity of gm and subsequently, temperature sensitivity of proposed sensor. Ultimately, the effects of channel diameter and oxide thickness on the temperature sensitivity of gm will be analytically investigated.\",\"PeriodicalId\":14081,\"journal\":{\"name\":\"international journal of nano dimension\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2015-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"international journal of nano dimension\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7508/IJND.2015.04.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"international journal of nano dimension","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7508/IJND.2015.04.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Representation of the temperature nano-sensors via cylindrical gate-all-around Si-NW-FET
In this paper, the temperature dependence of some characteristics of cylindrical gate-all-around Si nanowire field effect transistor (GAA-Si-NWFET) is investigated to representing the temperature nano-sensor structures and improving their performance. Firstly, we calculate the temperature sensitivity of drain-source current versus the gate-source voltage of GAA-Si-NWFET to propose the temperature nano-sensor circuit. Then the solutions of increasing current temperature sensitivity are discussed by investigating the effects of the oxide thickness and the channel diameter on this parameter. Secondly, in this study, we demonstrate the temperature dependence of the transconductance (gm) and output resistance (ro) of the GAA-Si-NWFET. We have proposed the amplifier circuit as a temperature sensor based on the temperature dependence of these parameters. In addition, we have changed the channel diameter and the oxide thickness to increase the temperature sensitivity of gm and subsequently, temperature sensitivity of proposed sensor. Ultimately, the effects of channel diameter and oxide thickness on the temperature sensitivity of gm will be analytically investigated.