非参数二进回归的极大极小风险和一致收敛速率

B. Graham, Fengshi Niu, J. Powell
{"title":"非参数二进回归的极大极小风险和一致收敛速率","authors":"B. Graham, Fengshi Niu, J. Powell","doi":"10.3386/W28548","DOIUrl":null,"url":null,"abstract":"Let $i=1,\\ldots,N$ index a simple random sample of units drawn from some large population. For each unit we observe the vector of regressors $X_{i}$ and, for each of the $N\\left(N-1\\right)$ ordered pairs of units, an outcome $Y_{ij}$. The outcomes $Y_{ij}$ and $Y_{kl}$ are independent if their indices are disjoint, but dependent otherwise (i.e., \"dyadically dependent\"). Let $W_{ij}=\\left(X_{i}',X_{j}'\\right)'$; using the sampled data we seek to construct a nonparametric estimate of the mean regression function $g\\left(W_{ij}\\right)\\overset{def}{\\equiv}\\mathbb{E}\\left[\\left.Y_{ij}\\right|X_{i},X_{j}\\right].$ \nWe present two sets of results. First, we calculate lower bounds on the minimax risk for estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression estimator achieves the optimal rates suggested by our risk bounds when an appropriate bandwidth sequence is chosen. This optimal rate differs from the one available under iid data: the effective sample size is smaller and $d_W=\\mathrm{dim}(W_{ij})$ influences the rate differently.","PeriodicalId":19091,"journal":{"name":"NBER Working Paper Series","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression\",\"authors\":\"B. Graham, Fengshi Niu, J. Powell\",\"doi\":\"10.3386/W28548\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $i=1,\\\\ldots,N$ index a simple random sample of units drawn from some large population. For each unit we observe the vector of regressors $X_{i}$ and, for each of the $N\\\\left(N-1\\\\right)$ ordered pairs of units, an outcome $Y_{ij}$. The outcomes $Y_{ij}$ and $Y_{kl}$ are independent if their indices are disjoint, but dependent otherwise (i.e., \\\"dyadically dependent\\\"). Let $W_{ij}=\\\\left(X_{i}',X_{j}'\\\\right)'$; using the sampled data we seek to construct a nonparametric estimate of the mean regression function $g\\\\left(W_{ij}\\\\right)\\\\overset{def}{\\\\equiv}\\\\mathbb{E}\\\\left[\\\\left.Y_{ij}\\\\right|X_{i},X_{j}\\\\right].$ \\nWe present two sets of results. First, we calculate lower bounds on the minimax risk for estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression estimator achieves the optimal rates suggested by our risk bounds when an appropriate bandwidth sequence is chosen. This optimal rate differs from the one available under iid data: the effective sample size is smaller and $d_W=\\\\mathrm{dim}(W_{ij})$ influences the rate differently.\",\"PeriodicalId\":19091,\"journal\":{\"name\":\"NBER Working Paper Series\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NBER Working Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3386/W28548\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NBER Working Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/W28548","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

让$i=1,\ldots,N$为从大量人口中抽取的简单随机样本单位编制索引。对于每个单元,我们观察回归量向量$X_{i}$,对于每个$N\left(N-1\right)$有序单元对,一个结果$Y_{ij}$。结果$Y_{ij}$和$Y_{kl}$是独立的,如果他们的指数是不相交的,但依赖,否则(即“二元依赖”)。让$W_{ij}=\left(X_{i}',X_{j}'\right)'$;使用采样数据,我们试图构建平均回归函数的非参数估计$g\left(W_{ij}\right)\overset{def}{\equiv}\mathbb{E}\left[\left.Y_{ij}\right|X_{i},X_{j}\right].$我们提出了两组结果。首先,我们计算了在(i)点和(ii)无穷范数下估计回归函数的最小最大风险的下界。其次,我们计算了熟悉的Nadaraya-Watson (NW)核回归估计的二进模拟的(i)点向和(ii)一致收敛率。我们表明,当选择适当的带宽序列时,NW核回归估计器实现了我们的风险界限所建议的最佳速率。这个最佳速率与iid数据下可用的速率不同:有效样本量较小,$d_W=\mathrm{dim}(W_{ij})$对速率的影响不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimax Risk and Uniform Convergence Rates for Nonparametric Dyadic Regression
Let $i=1,\ldots,N$ index a simple random sample of units drawn from some large population. For each unit we observe the vector of regressors $X_{i}$ and, for each of the $N\left(N-1\right)$ ordered pairs of units, an outcome $Y_{ij}$. The outcomes $Y_{ij}$ and $Y_{kl}$ are independent if their indices are disjoint, but dependent otherwise (i.e., "dyadically dependent"). Let $W_{ij}=\left(X_{i}',X_{j}'\right)'$; using the sampled data we seek to construct a nonparametric estimate of the mean regression function $g\left(W_{ij}\right)\overset{def}{\equiv}\mathbb{E}\left[\left.Y_{ij}\right|X_{i},X_{j}\right].$ We present two sets of results. First, we calculate lower bounds on the minimax risk for estimating the regression function at (i) a point and (ii) under the infinity norm. Second, we calculate (i) pointwise and (ii) uniform convergence rates for the dyadic analog of the familiar Nadaraya-Watson (NW) kernel regression estimator. We show that the NW kernel regression estimator achieves the optimal rates suggested by our risk bounds when an appropriate bandwidth sequence is chosen. This optimal rate differs from the one available under iid data: the effective sample size is smaller and $d_W=\mathrm{dim}(W_{ij})$ influences the rate differently.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Working Paper 47: Conflict of interest legislation in Brazil, South Korea and the European Union Financial Incentives and Other Nudges Do Not Increase Covid-19 Vaccinations Among the Vaccine Hesitant The Financial Fragility of For-Profit Hospitals: Evidence from the Covid-19 Pandemic Bundling Stress Tolerant Seeds and Insurance for More Resilient and Productive Small-Scale Agriculture Organizational Capacity and Profit Shifting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1