基于高斯近似的分布式检测快速多水平量化

Gökhan Gül, M. Baßler
{"title":"基于高斯近似的分布式检测快速多水平量化","authors":"Gökhan Gül, M. Baßler","doi":"10.23919/Eusipco47968.2020.9287316","DOIUrl":null,"url":null,"abstract":"An iterative algorithm is derived for multilevel quantization of sensor observations in distributed sensor networks, where each sensor transmits a summary of its observation to the fusion center and the fusion center makes the final decision. The proposed scheme is composed of a person-by-person optimum quantization at each sensor and a Gaussian approximation to the distribution of the test statistic at the fusion center. The complexity of the algorithm is linear both for identically and non-identically distributed independent sensors. Experimental results indicate that the proposed scheme is promising in comparison to the current state-of-the-art.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"99 1","pages":"2433-2437"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fast Multilevel Quantization for Distributed Detection Based on Gaussian Approximation\",\"authors\":\"Gökhan Gül, M. Baßler\",\"doi\":\"10.23919/Eusipco47968.2020.9287316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An iterative algorithm is derived for multilevel quantization of sensor observations in distributed sensor networks, where each sensor transmits a summary of its observation to the fusion center and the fusion center makes the final decision. The proposed scheme is composed of a person-by-person optimum quantization at each sensor and a Gaussian approximation to the distribution of the test statistic at the fusion center. The complexity of the algorithm is linear both for identically and non-identically distributed independent sensors. Experimental results indicate that the proposed scheme is promising in comparison to the current state-of-the-art.\",\"PeriodicalId\":6705,\"journal\":{\"name\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"99 1\",\"pages\":\"2433-2437\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/Eusipco47968.2020.9287316\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

推导了分布式传感器网络中传感器观测值多级量化的迭代算法,每个传感器将其观测值汇总发送到融合中心,融合中心进行最终决策。该方案由每个传感器的逐人优化量化和融合中心测试统计量分布的高斯逼近组成。该算法的复杂度对同分布和非同分布的独立传感器都是线性的。实验结果表明,与现有技术相比,该方案是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast Multilevel Quantization for Distributed Detection Based on Gaussian Approximation
An iterative algorithm is derived for multilevel quantization of sensor observations in distributed sensor networks, where each sensor transmits a summary of its observation to the fusion center and the fusion center makes the final decision. The proposed scheme is composed of a person-by-person optimum quantization at each sensor and a Gaussian approximation to the distribution of the test statistic at the fusion center. The complexity of the algorithm is linear both for identically and non-identically distributed independent sensors. Experimental results indicate that the proposed scheme is promising in comparison to the current state-of-the-art.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1