低埋藏变质作用对火山岩RbSr年龄的重置

Yemane Asmeroma , Paul Damon , M. Shafiqullah , William R. Dickinson , Robert E. Zartman
{"title":"低埋藏变质作用对火山岩RbSr年龄的重置","authors":"Yemane Asmeroma ,&nbsp;Paul Damon ,&nbsp;M. Shafiqullah ,&nbsp;William R. Dickinson ,&nbsp;Robert E. Zartman","doi":"10.1016/0168-9622(91)90019-S","DOIUrl":null,"url":null,"abstract":"<div><p>We report a nine-point RbSr whole-rock isochron age of 70±3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ± 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO<sub>2</sub> content as low as 57 wt.%, are susceptible to complete resetting.</p><p>The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism.</p></div>","PeriodicalId":100231,"journal":{"name":"Chemical Geology: Isotope Geoscience section","volume":"87 3","pages":"Pages 167-173"},"PeriodicalIF":0.0000,"publicationDate":"1991-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0168-9622(91)90019-S","citationCount":"10","resultStr":"{\"title\":\"Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism\",\"authors\":\"Yemane Asmeroma ,&nbsp;Paul Damon ,&nbsp;M. Shafiqullah ,&nbsp;William R. Dickinson ,&nbsp;Robert E. Zartman\",\"doi\":\"10.1016/0168-9622(91)90019-S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We report a nine-point RbSr whole-rock isochron age of 70±3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ± 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO<sub>2</sub> content as low as 57 wt.%, are susceptible to complete resetting.</p><p>The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism.</p></div>\",\"PeriodicalId\":100231,\"journal\":{\"name\":\"Chemical Geology: Isotope Geoscience section\",\"volume\":\"87 3\",\"pages\":\"Pages 167-173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0168-9622(91)90019-S\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology: Isotope Geoscience section\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/016896229190019S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology: Isotope Geoscience section","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/016896229190019S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

我们报道了中侏罗统火山岩的9点RbSr全岩等时线年龄为70±3 Ma (MSWD 3.97)。同样的岩石也用锆石UThPb法测定了年代,得出结晶年龄为166±11 Ma,是RbSr年龄的两倍多。数据表明,火山岩的全岩RbSr年龄,即使是SiO2含量低至57 wt.%的熔岩流,也容易发生完全重置。岩石的成分从流纹石凝灰岩到安山岩熔岩不等。含Rb、Sr的主要矿物全部被完全分解,形成由辉云母、钠长石、次生石英和少量绿泥石、绿帘石组成的蚀变矿物组合。辉长石是黑云母和钾长石破碎后的含钾产物。火山岩低变质期的压力,根据白云岩成分估计在4 ~ 6kbar之间,表明与逆冲有关的埋藏是重设的主要原因。因此,这样的重置等时线可以确定诸如区域逆冲和变质作用等大规模事件的年代。RbSr等时线的相干重置表明,在逆冲相关的埋藏变质作用中存在大规模的普遍流体运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resetting of RbSr ages of volcanic rocks by low-grade burial metamorphism

We report a nine-point RbSr whole-rock isochron age of 70±3 Ma (MSWD 3.97) for Mid-Jurassic volcanic rocks. The same rocks have also been dated by the UThPb method on zircon, giving a crystallization age of 166 ± 11 Ma, over twice as old as the RbSr age. The data demonstrate that whole-rock RbSr ages of volcanic rocks, even lava flows with SiO2 content as low as 57 wt.%, are susceptible to complete resetting.

The rocks range in composition from rhyodacite tuffs to andesite lavas. The complete breakdown of all major minerals that contain Rb and Sr resulted in an alteration mineral assemblage consisting of phengite, albite, secondary quartz, and minor amounts of chlorite and epidote. Phengite is the K-bearing product of the breakdown of biotite and K-feldspar. Pressure during low-grade metamorphism of the volcanic rocks, estimated from phengite composition to have been in the range of 4 to 6 kbar, points to thrust-related burial as the main cause of resetting. Consequently, such reset isochrons may date large-scale events such as regional thrusting and metamorphism. The coherent resetting of the RbSr isochron suggests large-scale pervasive fluid movement during thrust-related burial metamorphism.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction Chemical changes and carbon isotope variations in a cross-section of a large Miocene gymnospermous log The stable isotopic composition of photosynthetic pigments and related biochemicals Stable isotope fractionation of biomonomers during protokerogen formation Kinetic fractionation of stable carbon and nitrogen isotopes during peptide bond hydrolysis: Experimental evidence and geochemical implications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1