应用程序级膨胀,实现高效的服务器整合

T. Salomie, G. Alonso, Timothy Roscoe, Kevin Elphinstone
{"title":"应用程序级膨胀,实现高效的服务器整合","authors":"T. Salomie, G. Alonso, Timothy Roscoe, Kevin Elphinstone","doi":"10.1145/2465351.2465384","DOIUrl":null,"url":null,"abstract":"Systems software like databases and language runtimes typically manage memory themselves to exploit application knowledge unavailable to the OS. Traditionally deployed on dedicated machines, they are designed to be statically configured with memory sufficient for peak load. In virtualization scenarios (cloud computing, server consolidation), however, static peak provisioning of RAM to applications dramatically reduces the efficiency and cost-saving benefits of virtualization. Unfortunately, existing memory \"ballooning\" techniques used to dynamically reallocate physical memory between VMs badly impact the performance of applications which manage their own memory. We address this problem by extending ballooning to applications (here, a database engine and Java runtime) so that memory can be efficiently and effectively moved between virtualized instances as the demands of each change over time. The results are significantly lower memory requirements to provide the same performance guarantees to a collocated set of VM running such applications, with minimal overhead or intrusive changes to application code.","PeriodicalId":20737,"journal":{"name":"Proceedings of the Eleventh European Conference on Computer Systems","volume":"862 1","pages":"337-350"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"81","resultStr":"{\"title\":\"Application level ballooning for efficient server consolidation\",\"authors\":\"T. Salomie, G. Alonso, Timothy Roscoe, Kevin Elphinstone\",\"doi\":\"10.1145/2465351.2465384\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems software like databases and language runtimes typically manage memory themselves to exploit application knowledge unavailable to the OS. Traditionally deployed on dedicated machines, they are designed to be statically configured with memory sufficient for peak load. In virtualization scenarios (cloud computing, server consolidation), however, static peak provisioning of RAM to applications dramatically reduces the efficiency and cost-saving benefits of virtualization. Unfortunately, existing memory \\\"ballooning\\\" techniques used to dynamically reallocate physical memory between VMs badly impact the performance of applications which manage their own memory. We address this problem by extending ballooning to applications (here, a database engine and Java runtime) so that memory can be efficiently and effectively moved between virtualized instances as the demands of each change over time. The results are significantly lower memory requirements to provide the same performance guarantees to a collocated set of VM running such applications, with minimal overhead or intrusive changes to application code.\",\"PeriodicalId\":20737,\"journal\":{\"name\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"volume\":\"862 1\",\"pages\":\"337-350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"81\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Eleventh European Conference on Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465351.2465384\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Eleventh European Conference on Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465351.2465384","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 81

摘要

数据库和语言运行库等系统软件通常自己管理内存,以利用操作系统无法获得的应用程序知识。传统上部署在专用机器上,它们被设计为静态配置,具有足够的内存以应对峰值负载。然而,在虚拟化场景(云计算、服务器整合)中,向应用程序提供静态峰值RAM会大大降低虚拟化的效率和成本节约优势。不幸的是,现有的用于在vm之间动态重新分配物理内存的内存“膨胀”技术严重影响了管理自己内存的应用程序的性能。我们通过将膨胀扩展到应用程序(这里是数据库引擎和Java运行时)来解决这个问题,这样就可以根据每次需求的变化在虚拟实例之间高效地移动内存。其结果是显著降低了内存需求,从而为运行此类应用程序的一组并置VM提供相同的性能保证,同时开销最小或对应用程序代码进行侵入性更改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application level ballooning for efficient server consolidation
Systems software like databases and language runtimes typically manage memory themselves to exploit application knowledge unavailable to the OS. Traditionally deployed on dedicated machines, they are designed to be statically configured with memory sufficient for peak load. In virtualization scenarios (cloud computing, server consolidation), however, static peak provisioning of RAM to applications dramatically reduces the efficiency and cost-saving benefits of virtualization. Unfortunately, existing memory "ballooning" techniques used to dynamically reallocate physical memory between VMs badly impact the performance of applications which manage their own memory. We address this problem by extending ballooning to applications (here, a database engine and Java runtime) so that memory can be efficiently and effectively moved between virtualized instances as the demands of each change over time. The results are significantly lower memory requirements to provide the same performance guarantees to a collocated set of VM running such applications, with minimal overhead or intrusive changes to application code.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EuroSys '22: Seventeenth European Conference on Computer Systems, Rennes, France, April 5 - 8, 2022 EuroSys '21: Sixteenth European Conference on Computer Systems, Online Event, United Kingdom, April 26-28, 2021 EuroSys '20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April 27-30, 2020 STRADS: a distributed framework for scheduled model parallel machine learning NChecker: saving mobile app developers from network disruptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1