{"title":"纳米二氧化钛颗粒作为汽车润滑油添加剂的实验磨损分析","authors":"Á. Szabó, Á. Tóth, Hebah Abdallah, H. Hargitai","doi":"10.3390/micro3030050","DOIUrl":null,"url":null,"abstract":"This study focuses on the wear effects of nano-sized titania as a potential engine lubricant additive. Titanium dioxide nanoparticles have promising wear-reducing properties and significant tribological potential. In this article, titania nanoparticles were homogenized in Group III automotive oil at five different concentrations (0.1; 0.2 … 0.5 wt%). The nanodoped oil samples were tested on a linear oscillating tribometer with oil circulation. Based on the tribological results, titania nanoparticles increased friction by 20–32% but can reduce the wear area by up to 32%. According to the confocal microscopic examination, wear volume can be reduced by up to 57% with titania nanoparticles. Titania nanoparticles improved the repeatability of tribological measurements. A scanning electron microscopy examination of the wear track revealed that the characteristic wear of the tribological system was abrasive, but a significant amount of adhesive wear was also observed. Energy dispersive X-ray spectroscopy analysis found that the nanoparticles fill the deeper trenches of the wear. The worn surface uniformly contains TiO2 particles and the quantified normalized titanium concentration was between 0.56 and 0.62%.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"76 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Wear Analysis of Nano-Sized Titania Particles as Additives in Automotive Lubricants\",\"authors\":\"Á. Szabó, Á. Tóth, Hebah Abdallah, H. Hargitai\",\"doi\":\"10.3390/micro3030050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study focuses on the wear effects of nano-sized titania as a potential engine lubricant additive. Titanium dioxide nanoparticles have promising wear-reducing properties and significant tribological potential. In this article, titania nanoparticles were homogenized in Group III automotive oil at five different concentrations (0.1; 0.2 … 0.5 wt%). The nanodoped oil samples were tested on a linear oscillating tribometer with oil circulation. Based on the tribological results, titania nanoparticles increased friction by 20–32% but can reduce the wear area by up to 32%. According to the confocal microscopic examination, wear volume can be reduced by up to 57% with titania nanoparticles. Titania nanoparticles improved the repeatability of tribological measurements. A scanning electron microscopy examination of the wear track revealed that the characteristic wear of the tribological system was abrasive, but a significant amount of adhesive wear was also observed. Energy dispersive X-ray spectroscopy analysis found that the nanoparticles fill the deeper trenches of the wear. The worn surface uniformly contains TiO2 particles and the quantified normalized titanium concentration was between 0.56 and 0.62%.\",\"PeriodicalId\":18398,\"journal\":{\"name\":\"Micro & Nano Letters\",\"volume\":\"76 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro & Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.3390/micro3030050\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3030050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimental Wear Analysis of Nano-Sized Titania Particles as Additives in Automotive Lubricants
This study focuses on the wear effects of nano-sized titania as a potential engine lubricant additive. Titanium dioxide nanoparticles have promising wear-reducing properties and significant tribological potential. In this article, titania nanoparticles were homogenized in Group III automotive oil at five different concentrations (0.1; 0.2 … 0.5 wt%). The nanodoped oil samples were tested on a linear oscillating tribometer with oil circulation. Based on the tribological results, titania nanoparticles increased friction by 20–32% but can reduce the wear area by up to 32%. According to the confocal microscopic examination, wear volume can be reduced by up to 57% with titania nanoparticles. Titania nanoparticles improved the repeatability of tribological measurements. A scanning electron microscopy examination of the wear track revealed that the characteristic wear of the tribological system was abrasive, but a significant amount of adhesive wear was also observed. Energy dispersive X-ray spectroscopy analysis found that the nanoparticles fill the deeper trenches of the wear. The worn surface uniformly contains TiO2 particles and the quantified normalized titanium concentration was between 0.56 and 0.62%.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics