{"title":"用于超级电容器性能的硫化镍薄膜电极的化学合成与表征","authors":"M. Sonawane, R. Patil","doi":"10.26438/ijsrpas/v7i1.4245","DOIUrl":null,"url":null,"abstract":"All Nickel Sulphide thin films were deposited onto the stainless steel substrate by modified chemical bath deposition method. The structural, surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) respectively. The electrochemical capacitor performances were examined by using cyclic voltammetry and galvanostatic charge-discharge method. The NiS electrode exhibits a good cycling performance. The specific capacitance of 353 Fgm -1 has been obtained in 2 M KOH solution at a scan rate 50 mVs -1 within the potential range 0 to 0.8 V Vs Ag/AgCl. In charge-discharge behaviors, the maximum energy density (E) of 11.7 Whkg -1 and power density (P) of 4.3 kWkg -1 was obtained at a current density 1 mA/cm 2 . Impedance spectroscopic analysis revealed that the ESR is 5 Ω in KOH electrolyte. Keywords— Nickel Sulphide (NiS), Thin films, Cyclic voltammetry, Supercapacitor, Charge-discharge","PeriodicalId":14348,"journal":{"name":"International Journal of Scientific Research in Physics and Applied Sciences","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical Synthesis and Characterization of Nickel Sulphide Thin Film Electrode for Supercapacitor Performances\",\"authors\":\"M. Sonawane, R. Patil\",\"doi\":\"10.26438/ijsrpas/v7i1.4245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"All Nickel Sulphide thin films were deposited onto the stainless steel substrate by modified chemical bath deposition method. The structural, surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) respectively. The electrochemical capacitor performances were examined by using cyclic voltammetry and galvanostatic charge-discharge method. The NiS electrode exhibits a good cycling performance. The specific capacitance of 353 Fgm -1 has been obtained in 2 M KOH solution at a scan rate 50 mVs -1 within the potential range 0 to 0.8 V Vs Ag/AgCl. In charge-discharge behaviors, the maximum energy density (E) of 11.7 Whkg -1 and power density (P) of 4.3 kWkg -1 was obtained at a current density 1 mA/cm 2 . Impedance spectroscopic analysis revealed that the ESR is 5 Ω in KOH electrolyte. Keywords— Nickel Sulphide (NiS), Thin films, Cyclic voltammetry, Supercapacitor, Charge-discharge\",\"PeriodicalId\":14348,\"journal\":{\"name\":\"International Journal of Scientific Research in Physics and Applied Sciences\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Scientific Research in Physics and Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26438/ijsrpas/v7i1.4245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Scientific Research in Physics and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26438/ijsrpas/v7i1.4245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
采用改进的化学浴沉积法将所有的硫化镍薄膜沉积在不锈钢基体上。采用x射线衍射仪(XRD)和扫描电镜(SEM)对其结构和表面形貌进行了表征。采用循环伏安法和恒流充放电法对电化学电容器的性能进行了检测。NiS电极具有良好的循环性能。在2 M KOH溶液中,在0 ~ 0.8 V Vs Ag/AgCl电位范围内,扫描速率为50 mv -1,获得了353 Fgm -1的比电容。在充放电行为中,在电流密度为1 mA/ cm2时,获得了最大能量密度(E)为11.7 Whkg -1,功率密度(P)为4.3 kWkg -1。阻抗谱分析表明,KOH电解质的ESR为5 Ω。关键词:硫化镍,薄膜,循环伏安法,超级电容器,充放电
Chemical Synthesis and Characterization of Nickel Sulphide Thin Film Electrode for Supercapacitor Performances
All Nickel Sulphide thin films were deposited onto the stainless steel substrate by modified chemical bath deposition method. The structural, surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) respectively. The electrochemical capacitor performances were examined by using cyclic voltammetry and galvanostatic charge-discharge method. The NiS electrode exhibits a good cycling performance. The specific capacitance of 353 Fgm -1 has been obtained in 2 M KOH solution at a scan rate 50 mVs -1 within the potential range 0 to 0.8 V Vs Ag/AgCl. In charge-discharge behaviors, the maximum energy density (E) of 11.7 Whkg -1 and power density (P) of 4.3 kWkg -1 was obtained at a current density 1 mA/cm 2 . Impedance spectroscopic analysis revealed that the ESR is 5 Ω in KOH electrolyte. Keywords— Nickel Sulphide (NiS), Thin films, Cyclic voltammetry, Supercapacitor, Charge-discharge