大气和生态系统大数据为实现联合国可持续发展目标作出重要贡献

IF 4.2 3区 地球科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Big Earth Data Pub Date : 2021-07-03 DOI:10.1080/20964471.2021.1936943
M. Kulmala, A. Lintunen, Ilona Ylivinkka, Janne Mukkala, Rosa Rantanen, J. Kujansuu, T. Petäjä, H. Lappalainen
{"title":"大气和生态系统大数据为实现联合国可持续发展目标作出重要贡献","authors":"M. Kulmala, A. Lintunen, Ilona Ylivinkka, Janne Mukkala, Rosa Rantanen, J. Kujansuu, T. Petäjä, H. Lappalainen","doi":"10.1080/20964471.2021.1936943","DOIUrl":null,"url":null,"abstract":"ABSTRACT Big open data comprising comprehensive, long-term atmospheric and ecosystem in-situ observations will give us tools to meet global grand challenges and to contribute towards sustainable development. United Nations’ Sustainable Development Goals (UN SDGs) provide framework for the process. We present synthesis on how Station for Measuring Earth Surface–Atmosphere Relations (SMEAR) observation network can contribute to UN SDGs. We describe SMEAR II flagship station in Hyytiälä, Finland. With more than 1200 variables measured in an integrated manner, we can understand interactions and feedbacks between biosphere and atmosphere. This contributes towards understanding impacts of climate change to natural ecosystems and feedbacks from ecosystems to climate. The benefits of SMEAR concept are highlighted through outreach project in Eastern Lapland utilizing SMEAR I observations from Värriö research station. In contrast to boreal environment, SMEAR concept was also deployed in Beijing. We underline the benefits of comprehensive observations to gain novel insights into complex interactions between densely populated urban environment and atmosphere. Such observations enable work towards solving air quality problems and improve the quality of life inside megacities. The network of comprehensive stations with various measurements will enable science-based decision making and support sustainable development by providing long-term view on spatio-temporal trends on atmospheric composition and ecosystem parameters.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"30 1","pages":"277 - 305"},"PeriodicalIF":4.2000,"publicationDate":"2021-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Atmospheric and ecosystem big data providing key contributions in reaching United Nations’ Sustainable Development Goals\",\"authors\":\"M. Kulmala, A. Lintunen, Ilona Ylivinkka, Janne Mukkala, Rosa Rantanen, J. Kujansuu, T. Petäjä, H. Lappalainen\",\"doi\":\"10.1080/20964471.2021.1936943\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Big open data comprising comprehensive, long-term atmospheric and ecosystem in-situ observations will give us tools to meet global grand challenges and to contribute towards sustainable development. United Nations’ Sustainable Development Goals (UN SDGs) provide framework for the process. We present synthesis on how Station for Measuring Earth Surface–Atmosphere Relations (SMEAR) observation network can contribute to UN SDGs. We describe SMEAR II flagship station in Hyytiälä, Finland. With more than 1200 variables measured in an integrated manner, we can understand interactions and feedbacks between biosphere and atmosphere. This contributes towards understanding impacts of climate change to natural ecosystems and feedbacks from ecosystems to climate. The benefits of SMEAR concept are highlighted through outreach project in Eastern Lapland utilizing SMEAR I observations from Värriö research station. In contrast to boreal environment, SMEAR concept was also deployed in Beijing. We underline the benefits of comprehensive observations to gain novel insights into complex interactions between densely populated urban environment and atmosphere. Such observations enable work towards solving air quality problems and improve the quality of life inside megacities. The network of comprehensive stations with various measurements will enable science-based decision making and support sustainable development by providing long-term view on spatio-temporal trends on atmospheric composition and ecosystem parameters.\",\"PeriodicalId\":8765,\"journal\":{\"name\":\"Big Earth Data\",\"volume\":\"30 1\",\"pages\":\"277 - 305\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2021-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Earth Data\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/20964471.2021.1936943\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2021.1936943","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 7

摘要

包含全面、长期大气和生态系统原位观测的大开放数据将为我们提供应对全球重大挑战和促进可持续发展的工具。联合国可持续发展目标(UN SDGs)为这一进程提供了框架。我们综合介绍了地球表面-大气关系测量站(SMEAR)观测网如何为联合国可持续发展目标做出贡献。我们描述了芬兰Hyytiälä的SMEAR II旗舰站。通过对1200多个变量的综合测量,我们可以了解生物圈和大气之间的相互作用和反馈。这有助于理解气候变化对自然生态系统的影响以及生态系统对气候的反馈。利用Värriö研究站的SMEAR I观测结果在东拉普兰开展的外联项目突出了SMEAR概念的好处。与北方环境不同,北京也采用了涂片概念。我们强调综合观测的好处,以获得对人口稠密的城市环境和大气之间复杂相互作用的新见解。这样的观察有助于解决空气质量问题,提高特大城市的生活质量。具有各种测量的综合站网络将通过提供大气成分和生态系统参数的长期时空趋势视图,实现基于科学的决策和支持可持续发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atmospheric and ecosystem big data providing key contributions in reaching United Nations’ Sustainable Development Goals
ABSTRACT Big open data comprising comprehensive, long-term atmospheric and ecosystem in-situ observations will give us tools to meet global grand challenges and to contribute towards sustainable development. United Nations’ Sustainable Development Goals (UN SDGs) provide framework for the process. We present synthesis on how Station for Measuring Earth Surface–Atmosphere Relations (SMEAR) observation network can contribute to UN SDGs. We describe SMEAR II flagship station in Hyytiälä, Finland. With more than 1200 variables measured in an integrated manner, we can understand interactions and feedbacks between biosphere and atmosphere. This contributes towards understanding impacts of climate change to natural ecosystems and feedbacks from ecosystems to climate. The benefits of SMEAR concept are highlighted through outreach project in Eastern Lapland utilizing SMEAR I observations from Värriö research station. In contrast to boreal environment, SMEAR concept was also deployed in Beijing. We underline the benefits of comprehensive observations to gain novel insights into complex interactions between densely populated urban environment and atmosphere. Such observations enable work towards solving air quality problems and improve the quality of life inside megacities. The network of comprehensive stations with various measurements will enable science-based decision making and support sustainable development by providing long-term view on spatio-temporal trends on atmospheric composition and ecosystem parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Earth Data
Big Earth Data Earth and Planetary Sciences-Computers in Earth Sciences
CiteScore
7.40
自引率
10.00%
发文量
60
审稿时长
10 weeks
期刊最新文献
A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data The first 10 m resolution thermokarst lake and pond dataset for the Lena Basin in the 2020 thawing season A high-resolution dataset for lower atmospheric process studies over the Tibetan Plateau from 1981 to 2020 An application of 1D convolution and deep learning to remote sensing modelling of Secchi depth in the northern Adriatic Sea A mediation system for continuous spatial queries on a unified schema using Apache Spark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1