Sravani Konda, Dunni Aribuki, Weiqun Zhang, K. Gott, C. Lishka
{"title":"在AMReX中支持dpc++的经验","authors":"Sravani Konda, Dunni Aribuki, Weiqun Zhang, K. Gott, C. Lishka","doi":"10.1145/3456669.3456673","DOIUrl":null,"url":null,"abstract":"AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications. AMReX is developed as part of the United States Department Of Energy’s Exascale Computing Project (ECP). Besides AMR capabilities, AMReX also provides a parallel programming framework for numerous applications including six ECP projects, and it implements several backends for CPU-GPU heterogeneous computing. In this talk, we present our experiences supporting DPC++, a language based on the SYCL specification as a backend for AMReX. We will demonstrate how AMReX provides an abstraction layer for its users so that they can write performance portable code for a variety of heterogeneous platforms. We will discuss key DPC++ features that allow AMReX to implement the abstractions and our contributions to the oneAPI specification and Intel’s implementation. We will also highlight some features missing in SYCL/DPC++ that limits its efficiency and our future plans.","PeriodicalId":73497,"journal":{"name":"International Workshop on OpenCL","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experiences Supporting DPC++ in AMReX\",\"authors\":\"Sravani Konda, Dunni Aribuki, Weiqun Zhang, K. Gott, C. Lishka\",\"doi\":\"10.1145/3456669.3456673\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications. AMReX is developed as part of the United States Department Of Energy’s Exascale Computing Project (ECP). Besides AMR capabilities, AMReX also provides a parallel programming framework for numerous applications including six ECP projects, and it implements several backends for CPU-GPU heterogeneous computing. In this talk, we present our experiences supporting DPC++, a language based on the SYCL specification as a backend for AMReX. We will demonstrate how AMReX provides an abstraction layer for its users so that they can write performance portable code for a variety of heterogeneous platforms. We will discuss key DPC++ features that allow AMReX to implement the abstractions and our contributions to the oneAPI specification and Intel’s implementation. We will also highlight some features missing in SYCL/DPC++ that limits its efficiency and our future plans.\",\"PeriodicalId\":73497,\"journal\":{\"name\":\"International Workshop on OpenCL\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on OpenCL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3456669.3456673\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on OpenCL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3456669.3456673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
AMReX is a software framework for massively parallel, block-structured adaptive mesh refinement (AMR) applications. AMReX is developed as part of the United States Department Of Energy’s Exascale Computing Project (ECP). Besides AMR capabilities, AMReX also provides a parallel programming framework for numerous applications including six ECP projects, and it implements several backends for CPU-GPU heterogeneous computing. In this talk, we present our experiences supporting DPC++, a language based on the SYCL specification as a backend for AMReX. We will demonstrate how AMReX provides an abstraction layer for its users so that they can write performance portable code for a variety of heterogeneous platforms. We will discuss key DPC++ features that allow AMReX to implement the abstractions and our contributions to the oneAPI specification and Intel’s implementation. We will also highlight some features missing in SYCL/DPC++ that limits its efficiency and our future plans.