预测蛋白质二级结构含量的人工神经网络方法

Yu-Dong Cai , Xiao-Jun Liu , Xue-biao Xu , Kuo-Chen Chou
{"title":"预测蛋白质二级结构含量的人工神经网络方法","authors":"Yu-Dong Cai ,&nbsp;Xiao-Jun Liu ,&nbsp;Xue-biao Xu ,&nbsp;Kuo-Chen Chou","doi":"10.1016/S0097-8485(01)00125-5","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on ‘pair-coupled amino acid composition’, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good results obtained when using the neural network method to predict the contents of α-helix, β-sheet, parallel β-sheet strand, antiparallel β-sheet strand, β-bridge, 3<sub>10</sub>-helix, π-helix, H-bonded turn, bend, and random coil.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 4","pages":"Pages 347-350"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00125-5","citationCount":"19","resultStr":"{\"title\":\"Artificial neural network method for predicting protein secondary structure content\",\"authors\":\"Yu-Dong Cai ,&nbsp;Xiao-Jun Liu ,&nbsp;Xue-biao Xu ,&nbsp;Kuo-Chen Chou\",\"doi\":\"10.1016/S0097-8485(01)00125-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on ‘pair-coupled amino acid composition’, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good results obtained when using the neural network method to predict the contents of α-helix, β-sheet, parallel β-sheet strand, antiparallel β-sheet strand, β-bridge, 3<sub>10</sub>-helix, π-helix, H-bonded turn, bend, and random coil.</p></div>\",\"PeriodicalId\":79331,\"journal\":{\"name\":\"Computers & chemistry\",\"volume\":\"26 4\",\"pages\":\"Pages 347-350\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00125-5\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0097848501001255\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0097848501001255","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

本文采用神经网络方法预测基于“对偶氨基酸组成”的蛋白质二级结构元素含量,其中序列耦合效应通过一系列条件概率元素显式包含。该预测通过自一致性测试和独立数据集进行检验。用神经网络方法预测α-螺旋、β-片、平行β-片、反平行β-片、β-桥、310-螺旋、π-螺旋、h键旋转、弯曲和随机线圈的含量,均取得了较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Artificial neural network method for predicting protein secondary structure content

In this paper, the neural network method was applied to predict the content of protein secondary structure elements that was based on ‘pair-coupled amino acid composition’, in which the sequence coupling effects are explicitly included through a series of conditional probability elements. The prediction was examined by a self-consistency test and an independent-dataset. Both indicated good results obtained when using the neural network method to predict the contents of α-helix, β-sheet, parallel β-sheet strand, antiparallel β-sheet strand, β-bridge, 310-helix, π-helix, H-bonded turn, bend, and random coil.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Instructions to authors Author Index Keyword Index Volume contents New molecular surface-based 3D-QSAR method using Kohonen neural network and 3-way PLS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1