具有时变时滞和脉冲的clifford -value Takagi-Sugeno模糊神经网络的全局稳定性

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, CYBERNETICS Kybernetika Pub Date : 2022-10-26 DOI:10.14736/kyb-2022-4-0498
R. Sriraman, Asha Nedunchezhiyan
{"title":"具有时变时滞和脉冲的clifford -value Takagi-Sugeno模糊神经网络的全局稳定性","authors":"R. Sriraman, Asha Nedunchezhiyan","doi":"10.14736/kyb-2022-4-0498","DOIUrl":null,"url":null,"abstract":"In this study, we consider the Takagi–Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the n -dimensional Clifford-valued neural network into 2 m n -dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequali-ties (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.","PeriodicalId":49928,"journal":{"name":"Kybernetika","volume":"43 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses\",\"authors\":\"R. Sriraman, Asha Nedunchezhiyan\",\"doi\":\"10.14736/kyb-2022-4-0498\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we consider the Takagi–Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the n -dimensional Clifford-valued neural network into 2 m n -dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequali-ties (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.\",\"PeriodicalId\":49928,\"journal\":{\"name\":\"Kybernetika\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetika\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.14736/kyb-2022-4-0498\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetika","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.14736/kyb-2022-4-0498","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 4

摘要

本文利用Takagi-Sugeno (T-S)模糊模型研究了具有时变时滞和脉冲的clifford值神经网络的全局渐近稳定性。为了实现全局渐近稳定性准则,我们设计了一个通用网络模型,其中包括四元数网络、复值网络和实值网络作为特例。首先,我们将n维Clifford值神经网络分解为2m个n维实值神经网络,以解决Clifford数乘法的非交换性问题。然后,通过构造合适的Lyapunov-Krasovskii泛函(LKFs),利用Jensen积分不等式和倒凸组合方法证明了新的全局渐近稳定性判据。所有的结果都是用线性矩阵不等式(lmi)证明的。最后,通过数值算例验证了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Global stability of Clifford-valued Takagi-Sugeno fuzzy neural networks with time-varying delays and impulses
In this study, we consider the Takagi–Sugeno (T-S) fuzzy model to examine the global asymptotic stability of Clifford-valued neural networks with time-varying delays and impulses. In order to achieve the global asymptotic stability criteria, we design a general network model that includes quaternion-, complex-, and real-valued networks as special cases. First, we decompose the n -dimensional Clifford-valued neural network into 2 m n -dimensional real-valued counterparts in order to solve the noncommutativity of Clifford numbers multiplication. Then, we prove the new global asymptotic stability criteria by constructing an appropriate Lyapunov-Krasovskii functionals (LKFs) and employing Jensen’s integral inequality together with the reciprocal convex combination method. All the results are proven using linear matrix inequali-ties (LMIs). Finally, a numerical example is provided to show the effectiveness of the achieved results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Kybernetika
Kybernetika 工程技术-计算机:控制论
CiteScore
1.30
自引率
20.00%
发文量
38
审稿时长
6 months
期刊介绍: Kybernetika is the bi-monthly international journal dedicated for rapid publication of high-quality, peer-reviewed research articles in fields covered by its title. The journal is published by Nakladatelství Academia, Centre of Administration and Operations of the Czech Academy of Sciences for the Institute of Information Theory and Automation of The Czech Academy of Sciences. Kybernetika traditionally publishes research results in the fields of Control Sciences, Information Sciences, Statistical Decision Making, Applied Probability Theory, Random Processes, Operations Research, Fuzziness and Uncertainty Theories, as well as in the topics closely related to the above fields.
期刊最新文献
Positive unknown inputs functional observers new design for positive linear systems Matrix representation of finite effect algebras A characterization of uninorms on bounded lattices via closure and interior operators Aggregation of fuzzy vector spaces An elementary proof of Marcellini Sbordone semicontinuity theorem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1