A. Digulescu, A. Sârbu, Denis Stanescu, D. Nastasiu, Cristina Despina-Stoian, C. Ioana, A. Mansour
{"title":"基于相位图域表征的OFDM调制检测","authors":"A. Digulescu, A. Sârbu, Denis Stanescu, D. Nastasiu, Cristina Despina-Stoian, C. Ioana, A. Mansour","doi":"10.3389/frsip.2023.1197590","DOIUrl":null,"url":null,"abstract":"Signal modulation identification is of high interest for applications in military communications, but is not limited only to this specific field. Some possible applications are related to spectrum surveillance, electronic warfare, quality services, and cognitive radio. Distinguishing between multi-carrier signals, such as orthogonal frequency division multiplexing (OFDM) signals, and single-carrier signals is very important in several applications. Conventional methods face a stalemate in which the classification accuracy process is limited, and, therefore, new descriptors are needed to complement the existing methods. Another drawback is that some features cannot be extracted using conventional feature extraction techniques in practical OFDM systems. This paper introduces a new signal detection algorithm based on the phase diagram characterization. First, the proposed algorithm is described and implemented for simulated signals in MATLAB. Second, the algorithm performance is verified in an experimental scenario by using long-term evolution OFDM signals over a software-defined radio (SDR) frequency testbed. Our findings suggest that the algorithm provides good detection performance in realistic noisy environments.","PeriodicalId":93557,"journal":{"name":"Frontiers in signal processing","volume":"41 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of OFDM modulations based on the characterization in the phase diagram domain\",\"authors\":\"A. Digulescu, A. Sârbu, Denis Stanescu, D. Nastasiu, Cristina Despina-Stoian, C. Ioana, A. Mansour\",\"doi\":\"10.3389/frsip.2023.1197590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Signal modulation identification is of high interest for applications in military communications, but is not limited only to this specific field. Some possible applications are related to spectrum surveillance, electronic warfare, quality services, and cognitive radio. Distinguishing between multi-carrier signals, such as orthogonal frequency division multiplexing (OFDM) signals, and single-carrier signals is very important in several applications. Conventional methods face a stalemate in which the classification accuracy process is limited, and, therefore, new descriptors are needed to complement the existing methods. Another drawback is that some features cannot be extracted using conventional feature extraction techniques in practical OFDM systems. This paper introduces a new signal detection algorithm based on the phase diagram characterization. First, the proposed algorithm is described and implemented for simulated signals in MATLAB. Second, the algorithm performance is verified in an experimental scenario by using long-term evolution OFDM signals over a software-defined radio (SDR) frequency testbed. Our findings suggest that the algorithm provides good detection performance in realistic noisy environments.\",\"PeriodicalId\":93557,\"journal\":{\"name\":\"Frontiers in signal processing\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2023-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in signal processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/frsip.2023.1197590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in signal processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/frsip.2023.1197590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Detection of OFDM modulations based on the characterization in the phase diagram domain
Signal modulation identification is of high interest for applications in military communications, but is not limited only to this specific field. Some possible applications are related to spectrum surveillance, electronic warfare, quality services, and cognitive radio. Distinguishing between multi-carrier signals, such as orthogonal frequency division multiplexing (OFDM) signals, and single-carrier signals is very important in several applications. Conventional methods face a stalemate in which the classification accuracy process is limited, and, therefore, new descriptors are needed to complement the existing methods. Another drawback is that some features cannot be extracted using conventional feature extraction techniques in practical OFDM systems. This paper introduces a new signal detection algorithm based on the phase diagram characterization. First, the proposed algorithm is described and implemented for simulated signals in MATLAB. Second, the algorithm performance is verified in an experimental scenario by using long-term evolution OFDM signals over a software-defined radio (SDR) frequency testbed. Our findings suggest that the algorithm provides good detection performance in realistic noisy environments.