宇宙微波背景调查中系统论的自旋表征——一个全面的形式主义

Nialh McCallum, Daniel B. Thomas, Michael L. Brown, N. Tessore
{"title":"宇宙微波背景调查中系统论的自旋表征——一个全面的形式主义","authors":"Nialh McCallum, Daniel B. Thomas, Michael L. Brown, N. Tessore","doi":"10.1093/mnras/staa3609","DOIUrl":null,"url":null,"abstract":"The CMB $B$-mode polarisation signal -- both the primordial gravitational wave signature and the signal sourced by lensing -- is subject to many contaminants from systematic effects. Of particular concern are systematics that result in mixing of signals of different ``spin'', particularly leakage from the much larger spin-0 intensity signal to the spin-2 polarisation signal. We present a general formalism, which can be applied to arbitrary focal plane setups, that characterises signals in terms of their spin. We provide general expressions to describe how spin-coupled signals observed by the detectors manifest at map-level, in the harmonic domain, and in the power spectra, focusing on the polarisation spectra -- the signals of interest for upcoming CMB surveys. We demonstrate the presence of a previously unidentified cross-term between the systematic and the intrinsic sky signal in the power spectrum, which in some cases can be the dominant source of contamination. The formalism is not restricted to intensity to polarisation leakage but provides a complete elucidation of all leakage including polarisation mixing, and applies to both full and partial (masked) sky surveys, thus covering space-based, balloon-borne, and ground-based experiments. Using a pair-differenced setup, we demonstrate the formalism by using it to completely characterise the effects of differential gain and pointing systematics, incorporating both intensity leakage and polarisation mixing. We validate our results with full time ordered data simulations. Finally, we show in an Appendix that an extension of simple binning map-making to include additional spin information is capable of removing spin-coupled systematics during the map-making process.","PeriodicalId":8431,"journal":{"name":"arXiv: Cosmology and Nongalactic Astrophysics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Spin characterization of systematics in CMB surveys – a comprehensive formalism\",\"authors\":\"Nialh McCallum, Daniel B. Thomas, Michael L. Brown, N. Tessore\",\"doi\":\"10.1093/mnras/staa3609\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The CMB $B$-mode polarisation signal -- both the primordial gravitational wave signature and the signal sourced by lensing -- is subject to many contaminants from systematic effects. Of particular concern are systematics that result in mixing of signals of different ``spin'', particularly leakage from the much larger spin-0 intensity signal to the spin-2 polarisation signal. We present a general formalism, which can be applied to arbitrary focal plane setups, that characterises signals in terms of their spin. We provide general expressions to describe how spin-coupled signals observed by the detectors manifest at map-level, in the harmonic domain, and in the power spectra, focusing on the polarisation spectra -- the signals of interest for upcoming CMB surveys. We demonstrate the presence of a previously unidentified cross-term between the systematic and the intrinsic sky signal in the power spectrum, which in some cases can be the dominant source of contamination. The formalism is not restricted to intensity to polarisation leakage but provides a complete elucidation of all leakage including polarisation mixing, and applies to both full and partial (masked) sky surveys, thus covering space-based, balloon-borne, and ground-based experiments. Using a pair-differenced setup, we demonstrate the formalism by using it to completely characterise the effects of differential gain and pointing systematics, incorporating both intensity leakage and polarisation mixing. We validate our results with full time ordered data simulations. Finally, we show in an Appendix that an extension of simple binning map-making to include additional spin information is capable of removing spin-coupled systematics during the map-making process.\",\"PeriodicalId\":8431,\"journal\":{\"name\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Cosmology and Nongalactic Astrophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/mnras/staa3609\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Cosmology and Nongalactic Astrophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/mnras/staa3609","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

CMB B模偏振信号——包括原始引力波信号和透镜产生的信号——受到系统效应的许多污染。特别值得关注的是导致不同“自旋”信号混合的系统,特别是从大得多的自旋-0强度信号泄漏到自旋-2极化信号。我们提出了一种一般的形式,它可以应用于任意焦平面设置,用自旋来表征信号。我们提供了一般表达式来描述探测器观察到的自旋耦合信号如何在图级,谐波域和功率谱中表现出来,重点关注极化谱-即将到来的CMB调查感兴趣的信号。我们证明了在功率谱中系统信号和固有天空信号之间存在先前未确定的交叉项,这在某些情况下可能是主要的污染源。这种形式不局限于极化泄漏的强度,而是提供了包括极化混合在内的所有泄漏的完整说明,并适用于全部和部分(掩模)天空调查,从而涵盖天基、气球载和地面实验。使用对差分设置,我们通过使用它来完全表征差分增益和指向系统学的影响,并结合强度泄漏和极化混合来证明形式主义。我们用全时间有序数据模拟验证了我们的结果。最后,我们在附录中表明,扩展简单的分形地图制作以包含额外的自旋信息能够在地图制作过程中消除自旋耦合系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spin characterization of systematics in CMB surveys – a comprehensive formalism
The CMB $B$-mode polarisation signal -- both the primordial gravitational wave signature and the signal sourced by lensing -- is subject to many contaminants from systematic effects. Of particular concern are systematics that result in mixing of signals of different ``spin'', particularly leakage from the much larger spin-0 intensity signal to the spin-2 polarisation signal. We present a general formalism, which can be applied to arbitrary focal plane setups, that characterises signals in terms of their spin. We provide general expressions to describe how spin-coupled signals observed by the detectors manifest at map-level, in the harmonic domain, and in the power spectra, focusing on the polarisation spectra -- the signals of interest for upcoming CMB surveys. We demonstrate the presence of a previously unidentified cross-term between the systematic and the intrinsic sky signal in the power spectrum, which in some cases can be the dominant source of contamination. The formalism is not restricted to intensity to polarisation leakage but provides a complete elucidation of all leakage including polarisation mixing, and applies to both full and partial (masked) sky surveys, thus covering space-based, balloon-borne, and ground-based experiments. Using a pair-differenced setup, we demonstrate the formalism by using it to completely characterise the effects of differential gain and pointing systematics, incorporating both intensity leakage and polarisation mixing. We validate our results with full time ordered data simulations. Finally, we show in an Appendix that an extension of simple binning map-making to include additional spin information is capable of removing spin-coupled systematics during the map-making process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Primordial Black Holes: from Theory to Gravitational Wave Observations Chasing the Tail of Cosmic Reionization with Dark Gap Statistics in the Ly$α$ Forest over $5 < z < 6$ Hubble tension and absolute constraints on the local Hubble parameter. Towards an Optimal Estimation of Cosmological Parameters with the Wavelet Scattering Transform Assessment of the cosmic distance duality relation using Gaussian process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1