Haitao Cheng, S. Ebadi, Xinhua Ren, Y. Yusuf, X. Gong
{"title":"基于无缝集成谐振器/天线的紧凑型无线无源传感机构","authors":"Haitao Cheng, S. Ebadi, Xinhua Ren, Y. Yusuf, X. Gong","doi":"10.1109/APS.2011.5996540","DOIUrl":null,"url":null,"abstract":"In this paper, a new wireless sensing mechanism is proposed based on the integration of a cavity resonator and a slot antenna. A compact structure can be achieved since this integration eliminates additional volume of the antenna and transition structure between the resonator and antenna. A resonator/antenna is demonstrated to verify the proposed technique. The resonator/antenna size is 14 by 13 by 3 mm. The resonant frequency of the resonator, i.e. 10.13 GHz, can be wirelessly detected at distances up to 55 mm. This approach can be useful in high-temperature wireless sensing applications where only passive sensors can survive.","PeriodicalId":6449,"journal":{"name":"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)","volume":"53 1","pages":"1350-1353"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A compact wireless passive sensing mechanism based on a seamlessly integrated resonator/antenna\",\"authors\":\"Haitao Cheng, S. Ebadi, Xinhua Ren, Y. Yusuf, X. Gong\",\"doi\":\"10.1109/APS.2011.5996540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new wireless sensing mechanism is proposed based on the integration of a cavity resonator and a slot antenna. A compact structure can be achieved since this integration eliminates additional volume of the antenna and transition structure between the resonator and antenna. A resonator/antenna is demonstrated to verify the proposed technique. The resonator/antenna size is 14 by 13 by 3 mm. The resonant frequency of the resonator, i.e. 10.13 GHz, can be wirelessly detected at distances up to 55 mm. This approach can be useful in high-temperature wireless sensing applications where only passive sensors can survive.\",\"PeriodicalId\":6449,\"journal\":{\"name\":\"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)\",\"volume\":\"53 1\",\"pages\":\"1350-1353\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APS.2011.5996540\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Antennas and Propagation (APSURSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS.2011.5996540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A compact wireless passive sensing mechanism based on a seamlessly integrated resonator/antenna
In this paper, a new wireless sensing mechanism is proposed based on the integration of a cavity resonator and a slot antenna. A compact structure can be achieved since this integration eliminates additional volume of the antenna and transition structure between the resonator and antenna. A resonator/antenna is demonstrated to verify the proposed technique. The resonator/antenna size is 14 by 13 by 3 mm. The resonant frequency of the resonator, i.e. 10.13 GHz, can be wirelessly detected at distances up to 55 mm. This approach can be useful in high-temperature wireless sensing applications where only passive sensors can survive.