基于Black-Litterman模型的信息系统投资组合管理决策支持

T. Stoilov, K. Stoilova, Miroslav Vladimirov
{"title":"基于Black-Litterman模型的信息系统投资组合管理决策支持","authors":"T. Stoilov, K. Stoilova, Miroslav Vladimirov","doi":"10.1142/s0219622021500589","DOIUrl":null,"url":null,"abstract":"An algorithm is derived for the development of portfolio decision-support information service. The algorithm allows being automated evaluations for the definition and solution of portfolio problems. Small set of historical data of asset returns with limited set of assets are used for the portfolio, which is the case for no institutional portfolio manager. The algorithm applies analytical relations for decreasing the computational workload for the estimation of the market parameters due to the limited number of assets. The subjective expert views in the Black–Litterman (BL) model are defined from additional assessment of historical data of the asset returns. The algorithm makes comparisons of the results for active portfolio management from the mean variance (MV) model, the BL one and the equal-weighted investment strategy. Benefits of the algorithm are the usage of small set of historical data and limited number of assets, which are proved in investment rolling horizon.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"28 1","pages":"643-664"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Decision Support for Portfolio Management by Information System with Black-Litterman Model\",\"authors\":\"T. Stoilov, K. Stoilova, Miroslav Vladimirov\",\"doi\":\"10.1142/s0219622021500589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An algorithm is derived for the development of portfolio decision-support information service. The algorithm allows being automated evaluations for the definition and solution of portfolio problems. Small set of historical data of asset returns with limited set of assets are used for the portfolio, which is the case for no institutional portfolio manager. The algorithm applies analytical relations for decreasing the computational workload for the estimation of the market parameters due to the limited number of assets. The subjective expert views in the Black–Litterman (BL) model are defined from additional assessment of historical data of the asset returns. The algorithm makes comparisons of the results for active portfolio management from the mean variance (MV) model, the BL one and the equal-weighted investment strategy. Benefits of the algorithm are the usage of small set of historical data and limited number of assets, which are proved in investment rolling horizon.\",\"PeriodicalId\":13527,\"journal\":{\"name\":\"Int. J. Inf. Technol. Decis. Mak.\",\"volume\":\"28 1\",\"pages\":\"643-664\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Technol. Decis. Mak.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219622021500589\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500589","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

推导了一种用于投资组合决策支持信息服务开发的算法。该算法允许对投资组合问题的定义和解决方案进行自动评估。投资组合使用的是有限资产组合的一小部分资产回报历史数据,这是没有机构投资组合经理的情况。由于资产数量有限,该算法采用分析关系来减少市场参数估计的计算量。Black-Litterman (BL)模型中的主观专家观点是通过对资产收益历史数据的附加评估来定义的。该算法将均值方差(MV)模型、均值方差(BL)模型和等权投资策略在主动投资组合管理中的结果进行了比较。该算法的优点是使用了较小的历史数据集和有限的资产数量,这在投资滚动视野中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decision Support for Portfolio Management by Information System with Black-Litterman Model
An algorithm is derived for the development of portfolio decision-support information service. The algorithm allows being automated evaluations for the definition and solution of portfolio problems. Small set of historical data of asset returns with limited set of assets are used for the portfolio, which is the case for no institutional portfolio manager. The algorithm applies analytical relations for decreasing the computational workload for the estimation of the market parameters due to the limited number of assets. The subjective expert views in the Black–Litterman (BL) model are defined from additional assessment of historical data of the asset returns. The algorithm makes comparisons of the results for active portfolio management from the mean variance (MV) model, the BL one and the equal-weighted investment strategy. Benefits of the algorithm are the usage of small set of historical data and limited number of assets, which are proved in investment rolling horizon.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1