{"title":"基于稀疏二维激光雷达数据的移动机器人目标差分定位","authors":"Marc Forstenhäusler, M. Karl, K. Dietmayer","doi":"10.1109/ICAR46387.2019.8981622","DOIUrl":null,"url":null,"abstract":"The highly accurate pose estimation of mobile robots with respect to a known target object is a key technology for autonomous industrial manufacturing processes. Current approaches generally assume that the environment is static and locate the robot in relation to pre-defined positions. This paper presents an implementation and validation of how to localize a mobile robot in relation to the coordinate system of the target object - a prerequisite for any kind of manipulation or interaction. This allows the robot to be localized to arbitrarily positioned objects in the environment. For experimental validation, a high-precision external tracking system is used as ground truth. In this way, objects of different shapes are evaluated from different viewpoints. We achieve a pose estimation accuracy of less than 1 cm in a real world scenario.","PeriodicalId":6606,"journal":{"name":"2019 19th International Conference on Advanced Robotics (ICAR)","volume":"45 1","pages":"598-603"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Object-based differential Localization of Mobile Robots using sparse 2D Lidar Data\",\"authors\":\"Marc Forstenhäusler, M. Karl, K. Dietmayer\",\"doi\":\"10.1109/ICAR46387.2019.8981622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The highly accurate pose estimation of mobile robots with respect to a known target object is a key technology for autonomous industrial manufacturing processes. Current approaches generally assume that the environment is static and locate the robot in relation to pre-defined positions. This paper presents an implementation and validation of how to localize a mobile robot in relation to the coordinate system of the target object - a prerequisite for any kind of manipulation or interaction. This allows the robot to be localized to arbitrarily positioned objects in the environment. For experimental validation, a high-precision external tracking system is used as ground truth. In this way, objects of different shapes are evaluated from different viewpoints. We achieve a pose estimation accuracy of less than 1 cm in a real world scenario.\",\"PeriodicalId\":6606,\"journal\":{\"name\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"volume\":\"45 1\",\"pages\":\"598-603\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Advanced Robotics (ICAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAR46387.2019.8981622\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Advanced Robotics (ICAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAR46387.2019.8981622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Object-based differential Localization of Mobile Robots using sparse 2D Lidar Data
The highly accurate pose estimation of mobile robots with respect to a known target object is a key technology for autonomous industrial manufacturing processes. Current approaches generally assume that the environment is static and locate the robot in relation to pre-defined positions. This paper presents an implementation and validation of how to localize a mobile robot in relation to the coordinate system of the target object - a prerequisite for any kind of manipulation or interaction. This allows the robot to be localized to arbitrarily positioned objects in the environment. For experimental validation, a high-precision external tracking system is used as ground truth. In this way, objects of different shapes are evaluated from different viewpoints. We achieve a pose estimation accuracy of less than 1 cm in a real world scenario.