Abdulmalek Ahmed, A. Mahmoud, S. Elkatatny, R. Gajbhiye, A. Majed
{"title":"轮胎废料在沙特G类油井水泥中的应用","authors":"Abdulmalek Ahmed, A. Mahmoud, S. Elkatatny, R. Gajbhiye, A. Majed","doi":"10.2118/204788-ms","DOIUrl":null,"url":null,"abstract":"\n Cementing is an important operation for the integrity of the wellbore due to its role in providing several functions. To perform these functions, a high performance cement is required. Different types of additives and materials have been added to the cement slurry to improve its performance. Tire waste material is considered one of the greatest wastes globally. It is a dangerous material to the environment and human. Subsequently, it has been included in many industrial processes to reduce its hazards. This work evaluated the application of tire waste material in oil and gas industry to improve the properties of Saudi class G oil well cement.\n Two cement slurries were formulated under high pressure and high temperature of 3000 psi and 292 °F, respectively. The first slurry was the base cement without tire waste and the second slurry contained the tire waste. The effect of using the two slurries on the cement properties such as density variation, compressive strength plastic viscosity, Poisson's ratio and porosity was evaluated.\n The results showed that, when tire waste material was used, lower density variation was accomplished. Using tire waste was efficient to decrease the density variation to an extremely low proportion of 0.5%. Adding tire waste to the cement composition decreased its plastic viscosity by 53.1%. The tire waste cement sample had a higher Poisson's ratio than the base cement sample by 14.3%. Utilizing the tire waste improved the cement's compressive strength by 48.3%. The cement porosity was declined by 23.1% after adding the tire waste. Beside the property's enhancement in the cement, the application of tire waste has also an economical advantage, since it is inexpensive material which is influential in our daily life.","PeriodicalId":11320,"journal":{"name":"Day 3 Tue, November 30, 2021","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Application of Tire Waste Material to Enhance the Properties of Saudi Class G Oil Well Cement\",\"authors\":\"Abdulmalek Ahmed, A. Mahmoud, S. Elkatatny, R. Gajbhiye, A. Majed\",\"doi\":\"10.2118/204788-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Cementing is an important operation for the integrity of the wellbore due to its role in providing several functions. To perform these functions, a high performance cement is required. Different types of additives and materials have been added to the cement slurry to improve its performance. Tire waste material is considered one of the greatest wastes globally. It is a dangerous material to the environment and human. Subsequently, it has been included in many industrial processes to reduce its hazards. This work evaluated the application of tire waste material in oil and gas industry to improve the properties of Saudi class G oil well cement.\\n Two cement slurries were formulated under high pressure and high temperature of 3000 psi and 292 °F, respectively. The first slurry was the base cement without tire waste and the second slurry contained the tire waste. The effect of using the two slurries on the cement properties such as density variation, compressive strength plastic viscosity, Poisson's ratio and porosity was evaluated.\\n The results showed that, when tire waste material was used, lower density variation was accomplished. Using tire waste was efficient to decrease the density variation to an extremely low proportion of 0.5%. Adding tire waste to the cement composition decreased its plastic viscosity by 53.1%. The tire waste cement sample had a higher Poisson's ratio than the base cement sample by 14.3%. Utilizing the tire waste improved the cement's compressive strength by 48.3%. The cement porosity was declined by 23.1% after adding the tire waste. Beside the property's enhancement in the cement, the application of tire waste has also an economical advantage, since it is inexpensive material which is influential in our daily life.\",\"PeriodicalId\":11320,\"journal\":{\"name\":\"Day 3 Tue, November 30, 2021\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 3 Tue, November 30, 2021\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/204788-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Tue, November 30, 2021","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/204788-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of Tire Waste Material to Enhance the Properties of Saudi Class G Oil Well Cement
Cementing is an important operation for the integrity of the wellbore due to its role in providing several functions. To perform these functions, a high performance cement is required. Different types of additives and materials have been added to the cement slurry to improve its performance. Tire waste material is considered one of the greatest wastes globally. It is a dangerous material to the environment and human. Subsequently, it has been included in many industrial processes to reduce its hazards. This work evaluated the application of tire waste material in oil and gas industry to improve the properties of Saudi class G oil well cement.
Two cement slurries were formulated under high pressure and high temperature of 3000 psi and 292 °F, respectively. The first slurry was the base cement without tire waste and the second slurry contained the tire waste. The effect of using the two slurries on the cement properties such as density variation, compressive strength plastic viscosity, Poisson's ratio and porosity was evaluated.
The results showed that, when tire waste material was used, lower density variation was accomplished. Using tire waste was efficient to decrease the density variation to an extremely low proportion of 0.5%. Adding tire waste to the cement composition decreased its plastic viscosity by 53.1%. The tire waste cement sample had a higher Poisson's ratio than the base cement sample by 14.3%. Utilizing the tire waste improved the cement's compressive strength by 48.3%. The cement porosity was declined by 23.1% after adding the tire waste. Beside the property's enhancement in the cement, the application of tire waste has also an economical advantage, since it is inexpensive material which is influential in our daily life.