基于免疫粒子群优化算法的增量PID控制器

Zhang Wei
{"title":"基于免疫粒子群优化算法的增量PID控制器","authors":"Zhang Wei","doi":"10.1109/cesa.2006.313632","DOIUrl":null,"url":null,"abstract":"Based on the astringency and practicability of Particle Swarm Optimization Algorithm(PSO) and T cell's promotions and B cell's restrainability of Immunity Particle Swarm Optimization Algorithm (IMPSO) and applied it to PID controllers.It is clear that IMPSO is suitable to Increment PID control according to the simulations and it made the tracking and anti-jamming of IM PID based on IMPSO,IMPSO more effective than those of PID based on PSO and those of IMPID based on Immunity Algorithm.","PeriodicalId":18640,"journal":{"name":"Microcomputer Information","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Increment PID Controller Based on Immunity Particle Swarm Optimization Algorithm\",\"authors\":\"Zhang Wei\",\"doi\":\"10.1109/cesa.2006.313632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the astringency and practicability of Particle Swarm Optimization Algorithm(PSO) and T cell's promotions and B cell's restrainability of Immunity Particle Swarm Optimization Algorithm (IMPSO) and applied it to PID controllers.It is clear that IMPSO is suitable to Increment PID control according to the simulations and it made the tracking and anti-jamming of IM PID based on IMPSO,IMPSO more effective than those of PID based on PSO and those of IMPID based on Immunity Algorithm.\",\"PeriodicalId\":18640,\"journal\":{\"name\":\"Microcomputer Information\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microcomputer Information\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/cesa.2006.313632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microcomputer Information","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/cesa.2006.313632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于粒子群优化算法(PSO)的收敛性和实用性,结合免疫粒子群优化算法(IMPSO)的T细胞的促进性和B细胞的约束性,将其应用于PID控制器。仿真结果表明,IMPSO适用于增量PID控制,并使基于IMPSO的IMPID的跟踪和抗干扰效果优于基于PSO的PID和基于免疫算法的IMPID。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Increment PID Controller Based on Immunity Particle Swarm Optimization Algorithm
Based on the astringency and practicability of Particle Swarm Optimization Algorithm(PSO) and T cell's promotions and B cell's restrainability of Immunity Particle Swarm Optimization Algorithm (IMPSO) and applied it to PID controllers.It is clear that IMPSO is suitable to Increment PID control according to the simulations and it made the tracking and anti-jamming of IM PID based on IMPSO,IMPSO more effective than those of PID based on PSO and those of IMPID based on Immunity Algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
29512
期刊最新文献
Circuit Module Design of High-Voltage Side for Optical Current Transformer A Secret Sharing Scheme Based on AES Design and Implementation of Smart Home System Based on ZigBee Technology Experimental Studies of Several Reflection Detection Methods An Ontology Based Information Retrieval System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1