Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, Qing An, Hai Hong, H. Liu, Ming Zhang
{"title":"XLINK","authors":"Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, Qing An, Hai Hong, H. Liu, Ming Zhang","doi":"10.1145/3452296.3472893","DOIUrl":null,"url":null,"abstract":"We report XLINK, a multi-path QUIC video transport solution with experiments in Taobao short videos. XLINK is designed to meet two operational challenges at the same time: (1) Optimized user-perceived quality of experience (QoE) in terms of robustness, smoothness, responsiveness, and mobility and (2) Minimized cost overhead for service providers (typically CDNs). The core of XLINK is to take the opportunity of QUIC as a user-space protocol and directly capture user-perceived video QoE intent to control multi-path scheduling and management. We overcome major hurdles such as multi-path head-of-line blocking, network heterogeneity, and rapid link variations and balance cost and performance. To the best of our knowledge, XLINK is the first large-scale experimental study of multi-path QUIC video services in production environments. We present the results of over 3 million e-commerce product short-video plays from consumers who upgraded to Taobao android app with XLINK. Our study shows that compared to single-path QUIC, XLINK achieved 19 to 50% improvement in the 99-th percentile video-chunk request completion time, 32% improvement in the 99-th percentile first-video-frame latency, 23 to 67% improvement in the re-buffering rate at the expense of 2.1% redundant traffic.","PeriodicalId":20487,"journal":{"name":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","volume":"48 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":"{\"title\":\"XLINK\",\"authors\":\"Zhilong Zheng, Yunfei Ma, Yanmei Liu, Furong Yang, Zhenyu Li, Yuanbo Zhang, Jiuhai Zhang, Wei Shi, Wentao Chen, Ding Li, Qing An, Hai Hong, H. Liu, Ming Zhang\",\"doi\":\"10.1145/3452296.3472893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report XLINK, a multi-path QUIC video transport solution with experiments in Taobao short videos. XLINK is designed to meet two operational challenges at the same time: (1) Optimized user-perceived quality of experience (QoE) in terms of robustness, smoothness, responsiveness, and mobility and (2) Minimized cost overhead for service providers (typically CDNs). The core of XLINK is to take the opportunity of QUIC as a user-space protocol and directly capture user-perceived video QoE intent to control multi-path scheduling and management. We overcome major hurdles such as multi-path head-of-line blocking, network heterogeneity, and rapid link variations and balance cost and performance. To the best of our knowledge, XLINK is the first large-scale experimental study of multi-path QUIC video services in production environments. We present the results of over 3 million e-commerce product short-video plays from consumers who upgraded to Taobao android app with XLINK. Our study shows that compared to single-path QUIC, XLINK achieved 19 to 50% improvement in the 99-th percentile video-chunk request completion time, 32% improvement in the 99-th percentile first-video-frame latency, 23 to 67% improvement in the re-buffering rate at the expense of 2.1% redundant traffic.\",\"PeriodicalId\":20487,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"46\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGCOMM 2021 Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3452296.3472893\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGCOMM 2021 Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3452296.3472893","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We report XLINK, a multi-path QUIC video transport solution with experiments in Taobao short videos. XLINK is designed to meet two operational challenges at the same time: (1) Optimized user-perceived quality of experience (QoE) in terms of robustness, smoothness, responsiveness, and mobility and (2) Minimized cost overhead for service providers (typically CDNs). The core of XLINK is to take the opportunity of QUIC as a user-space protocol and directly capture user-perceived video QoE intent to control multi-path scheduling and management. We overcome major hurdles such as multi-path head-of-line blocking, network heterogeneity, and rapid link variations and balance cost and performance. To the best of our knowledge, XLINK is the first large-scale experimental study of multi-path QUIC video services in production environments. We present the results of over 3 million e-commerce product short-video plays from consumers who upgraded to Taobao android app with XLINK. Our study shows that compared to single-path QUIC, XLINK achieved 19 to 50% improvement in the 99-th percentile video-chunk request completion time, 32% improvement in the 99-th percentile first-video-frame latency, 23 to 67% improvement in the re-buffering rate at the expense of 2.1% redundant traffic.