{"title":"通过模块化预制结构实现灾后建筑的可持续性","authors":"Hatef Jafari Sharami, Siavash Teimouri","doi":"10.1080/13287982.2023.2232675","DOIUrl":null,"url":null,"abstract":"ABSTRACT In response to the challenges faced by post-disaster construction, the present study endeavours to offer an improved solution in a practical manner. To this end, a critical analysis of modular systems that can be employed in post-disaster construction is conducted, which is succeeded by the set of required features. Considering these features, a system based on modular prefabricated components (MPC) is presented, which effectively eliminates all hitches while demonstrating facilitated solutions. From a practical standpoint, a comprehensive description of the structure’s dimensions, assembly steps and design constraints are proffered, accompanied by primary structural analysis factoring in the highest risk categories. The applicability and limitations of the system in post-disaster scenarios are also discussed in comparison to other modular construction methods. The findings indicate that the system exhibits high levels of disjoint-ability and collectability, flexibility and customisability, developability and repairability, in addition to being cost- and time-efficient. Furthermore, it demonstrates a favourable response to the predicaments posed by post-disaster situations, such as logistics, construction process, safety, seismic behaviour and environmental effects. Overall, this research highlights the applicability and potential of MPC systems in post-disaster construction and delivers a valuable output for policymakers, managers, architects and engineers involved in this regard.","PeriodicalId":45617,"journal":{"name":"Australian Journal of Structural Engineering","volume":"18 1","pages":"279 - 293"},"PeriodicalIF":0.9000,"publicationDate":"2023-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards sustainability in post-disaster constructions with a modular prefabricated structure\",\"authors\":\"Hatef Jafari Sharami, Siavash Teimouri\",\"doi\":\"10.1080/13287982.2023.2232675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In response to the challenges faced by post-disaster construction, the present study endeavours to offer an improved solution in a practical manner. To this end, a critical analysis of modular systems that can be employed in post-disaster construction is conducted, which is succeeded by the set of required features. Considering these features, a system based on modular prefabricated components (MPC) is presented, which effectively eliminates all hitches while demonstrating facilitated solutions. From a practical standpoint, a comprehensive description of the structure’s dimensions, assembly steps and design constraints are proffered, accompanied by primary structural analysis factoring in the highest risk categories. The applicability and limitations of the system in post-disaster scenarios are also discussed in comparison to other modular construction methods. The findings indicate that the system exhibits high levels of disjoint-ability and collectability, flexibility and customisability, developability and repairability, in addition to being cost- and time-efficient. Furthermore, it demonstrates a favourable response to the predicaments posed by post-disaster situations, such as logistics, construction process, safety, seismic behaviour and environmental effects. Overall, this research highlights the applicability and potential of MPC systems in post-disaster construction and delivers a valuable output for policymakers, managers, architects and engineers involved in this regard.\",\"PeriodicalId\":45617,\"journal\":{\"name\":\"Australian Journal of Structural Engineering\",\"volume\":\"18 1\",\"pages\":\"279 - 293\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Structural Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/13287982.2023.2232675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Structural Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13287982.2023.2232675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Towards sustainability in post-disaster constructions with a modular prefabricated structure
ABSTRACT In response to the challenges faced by post-disaster construction, the present study endeavours to offer an improved solution in a practical manner. To this end, a critical analysis of modular systems that can be employed in post-disaster construction is conducted, which is succeeded by the set of required features. Considering these features, a system based on modular prefabricated components (MPC) is presented, which effectively eliminates all hitches while demonstrating facilitated solutions. From a practical standpoint, a comprehensive description of the structure’s dimensions, assembly steps and design constraints are proffered, accompanied by primary structural analysis factoring in the highest risk categories. The applicability and limitations of the system in post-disaster scenarios are also discussed in comparison to other modular construction methods. The findings indicate that the system exhibits high levels of disjoint-ability and collectability, flexibility and customisability, developability and repairability, in addition to being cost- and time-efficient. Furthermore, it demonstrates a favourable response to the predicaments posed by post-disaster situations, such as logistics, construction process, safety, seismic behaviour and environmental effects. Overall, this research highlights the applicability and potential of MPC systems in post-disaster construction and delivers a valuable output for policymakers, managers, architects and engineers involved in this regard.
期刊介绍:
The Australian Journal of Structural Engineering (AJSE) is published under the auspices of the Structural College Board of Engineers Australia. It fulfils part of the Board''s mission for Continuing Professional Development. The journal also offers a means for exchange and interaction of scientific and professional issues and technical developments. The journal is open to members and non-members of Engineers Australia. Original papers on research and development (Technical Papers) and professional matters and achievements (Professional Papers) in all areas relevant to the science, art and practice of structural engineering are considered for possible publication. All papers and technical notes are peer-reviewed. The fundamental criterion for acceptance for publication is the intellectual and professional value of the contribution. Occasionally, papers previously published in essentially the same form elsewhere may be considered for publication. In this case acknowledgement to prior publication must be included in a footnote on page one of the manuscript. These papers are peer-reviewed as new submissions. The length of acceptable contributions typically should not exceed 4,000 to 5,000 word equivalents. Longer manuscripts may be considered at the discretion of the Editor. Technical Notes typically should not exceed about 1,000 word equivalents. Discussions on a Paper or Note published in the AJSE are welcomed. Discussions must address significant matters related to the content of a Paper or Technical Note and may include supplementary and critical comments and questions regarding content.