一种新的具有长期相关性的随机过程

Sung Ik Kim, Y. S. Kim
{"title":"一种新的具有长期相关性的随机过程","authors":"Sung Ik Kim, Y. S. Kim","doi":"10.2991/jsta.d.200923.001","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with long-range dependence obtained by subordinating fractional Brownianmotion to a fractionalGeneralized InverseGaussian process. The basic properties and covariance structure between the elements of the processes are discussed, and we present numerical methods to generate the sample paths for the processes.","PeriodicalId":45080,"journal":{"name":"Journal of Statistical Theory and Applications","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Stochastic Process with Long-Range Dependence\",\"authors\":\"Sung Ik Kim, Y. S. Kim\",\"doi\":\"10.2991/jsta.d.200923.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with long-range dependence obtained by subordinating fractional Brownianmotion to a fractionalGeneralized InverseGaussian process. The basic properties and covariance structure between the elements of the processes are discussed, and we present numerical methods to generate the sample paths for the processes.\",\"PeriodicalId\":45080,\"journal\":{\"name\":\"Journal of Statistical Theory and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Statistical Theory and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2991/jsta.d.200923.001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2991/jsta.d.200923.001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文引入了分数阶广义双曲过程,它是将分数阶布朗运动隶属于分数阶广义逆高斯过程而得到的一种新的具有远程依赖的随机过程。讨论了过程元素的基本性质和协方差结构,给出了生成过程样本路径的数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Stochastic Process with Long-Range Dependence
In this paper, we introduce a fractional Generalized Hyperbolic process, a new stochastic process with long-range dependence obtained by subordinating fractional Brownianmotion to a fractionalGeneralized InverseGaussian process. The basic properties and covariance structure between the elements of the processes are discussed, and we present numerical methods to generate the sample paths for the processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
13
审稿时长
13 weeks
期刊最新文献
The Transformed MG-Extended Exponential Distribution: Properties and Applications Utilizing Repetitive Sampling in the Construction of a Control Chart for Lindley Distribution with Time Truncation Deriving the Distribution and Exploring the Utility of Partial $$R^2$$ in the Era of Big Data Neutrosophic Topp-Leone Distribution for Interval-Valued Data Analysis Topp-Leone Exponentiated Pareto Distribution: Properties and Application to Covid-19 Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1